Interaction between the 2'-5' oligoadenylate synthetase-like protein p59 OASL and the transcriptional repressor methyl CpG-binding protein 1. 2004

Jesper B Andersen, and Dorthe J Strandbygård, and Rune Hartmann, and Just Justesen
Department of Molecular Biology (MBI), University of Aarhus, Denmark.

The human 2'-5' oligoadenylate synthetases (OAS) form a conserved family of interferon-induced proteins consisting of four genes: OAS1, OAS2, OAS3 and the 2'-5' oligoadenylate synthetase-like gene (OASL). When activated by double-stranded RNA, OAS1-3 polymerize ATP into 2'-5'-linked oligoadenylates; 2'-5'-linked oligoadenylates, in turn, activate a latent endoribonuclease that degrades viral and cellular RNAs. In contrast, while the p59 OASL protein is highly homologous to the OAS family (45% identity), its 350 amino acid N-terminal domain lacks 2'-5' oligoadenylate synthetase activity. A C-terminal 164 amino acid domain, which is 30% homologous to a tandem repeat of ubiquitin, further distinguishes the p59 OASL protein and suggests that it serves a biological role which is distinct from other OAS family members. To dissect the function of p59 OASL, we utilized the yeast two-hybrid system to identify interacting proteins. Methyl CpG-binding protein 1 (MBD1), which functions as a transcriptional repressor, was identified as a strong p59 OASL interactor. Interestingly, like p59 OASL, transcription of the MBD1 gene was induced by interferon, indicating that these genes are co-ordinately regulated. The interaction was confirmed in vitro and in vivo and was mapped to the ubiquitin-like domain of p59 OASL. The p59 OASL-MBD1 interaction was specific, because p59 OASL did not interact with any of the other MBD family members and MBD1 did not interact with OAS1. These findings link the p59 OASL with MBD1 transcriptional control in the context of an interferon-stimulated cell, and provide the basis for future studies to examine the functional role of this interaction.

UI MeSH Term Description Entries
D007372 Interferons Proteins secreted by vertebrate cells in response to a wide variety of inducers. They confer resistance against many different viruses, inhibit proliferation of normal and malignant cells, impede multiplication of intracellular parasites, enhance macrophage and granulocyte phagocytosis, augment natural killer cell activity, and show several other immunomodulatory functions. Interferon
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

Jesper B Andersen, and Dorthe J Strandbygård, and Rune Hartmann, and Just Justesen
December 2005, Proceedings of the National Academy of Sciences of the United States of America,
Jesper B Andersen, and Dorthe J Strandbygård, and Rune Hartmann, and Just Justesen
September 1998, Nucleic acids research,
Jesper B Andersen, and Dorthe J Strandbygård, and Rune Hartmann, and Just Justesen
November 2008, The Journal of general virology,
Jesper B Andersen, and Dorthe J Strandbygård, and Rune Hartmann, and Just Justesen
March 1995, Nihon rinsho. Japanese journal of clinical medicine,
Jesper B Andersen, and Dorthe J Strandbygård, and Rune Hartmann, and Just Justesen
September 1999, Nihon rinsho. Japanese journal of clinical medicine,
Jesper B Andersen, and Dorthe J Strandbygård, and Rune Hartmann, and Just Justesen
June 1999, Biochemistry,
Jesper B Andersen, and Dorthe J Strandbygård, and Rune Hartmann, and Just Justesen
June 2003, Nucleic acids research,
Jesper B Andersen, and Dorthe J Strandbygård, and Rune Hartmann, and Just Justesen
September 1996, Nucleic acids research,
Copied contents to your clipboard!