Exercise increases endostatin in circulation of healthy volunteers. 2004

Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA. jgu@physiology.umsmed.edu

BACKGROUND Physical inactivity increases the risk of atherosclerosis. However, the molecular mechanisms of this relation are poorly understood. A recent report indicates that endostatin, an endogenous angiostatic factor, inhibits the progression of atherosclerosis, and suggests that reducing intimal and atherosclerotic plaque tissue neovascularization can inhibit the progression atherosclerosis in animal models. We hypothesize that exercise can elevate the circulatory endostatin level. Hence, exercise can protect against one of the mechanisms of atherosclerosis. RESULTS We examined treadmill exercise tests in healthy volunteers to determine the effect of exercise on plasma levels of endostatin and other angiogenic regulators. Oxygen consumption (VO2) was calculated. Plasma levels of endostatin, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) were determined using ELISA. The total peak VO2 (L) in 7 male subjects was 29.5 +/- 17.8 over a 4-10 minute interval of exercise. Basal plasma levels of endostatin (immediately before exercise) were 20.3 +/- 3.2 pg/ml, the plasma levels increased to 29.3 +/- 4.2, 35.2 +/- 1.8, and 27.1 +/- 2.2 ng/ml, at 0.5, 2, and 6 h, respectively, after exercise. There was a strong linear correlation between increased plasma levels of endostatin (%) and the total peak VO2 (L) related to exercise (R2 = 0.9388; P < 0.01). Concurrently, VEGF levels decreased to 28.3 +/- 6.4, 17.6 +/- 2.4, and 26.5 +/- 12.5 pg/ml, at 0.5, 2, and 6 h, respectively, after exercise. There were no significant changes in plasma bFGF levels in those subjects before and after exercise. CONCLUSIONS The results suggest that circulating endostatin can be significantly increased by exercise in proportion to the peak oxygen consumption under physiological conditions in healthy volunteers. These findings may provide new insights into the molecular links between physical inactivity and the risk of angiogenesis dependent diseases such as atherosclerosis.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D015444 Exercise Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure. Aerobic Exercise,Exercise, Aerobic,Exercise, Isometric,Exercise, Physical,Isometric Exercise,Physical Activity,Acute Exercise,Exercise Training,Activities, Physical,Activity, Physical,Acute Exercises,Aerobic Exercises,Exercise Trainings,Exercise, Acute,Exercises,Exercises, Acute,Exercises, Aerobic,Exercises, Isometric,Exercises, Physical,Isometric Exercises,Physical Activities,Physical Exercise,Physical Exercises,Training, Exercise,Trainings, Exercise
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2
D042461 Vascular Endothelial Growth Factor A The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced. Vascular Endothelial Growth Factor,Vascular Endothelial Growth Factor-A,GD-VEGF,Glioma-Derived Vascular Endothelial Cell Growth Factor,VEGF,VEGF-A,Vascular Permeability Factor,Vasculotropin,Glioma Derived Vascular Endothelial Cell Growth Factor,Permeability Factor, Vascular
D043169 Endostatins Angiostatic proteins that are formed from proteolytic cleavage of COLLAGEN TYPE XVIII. Endostatin

Related Publications

Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
February 2006, Medical science monitor : international medical journal of experimental and clinical research,
Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
February 2018, Free radical research,
Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
January 2017, Journal of Ayub Medical College, Abbottabad : JAMC,
Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
January 2018, Journal of circulating biomarkers,
Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
September 2002, Journal of applied physiology (Bethesda, Md. : 1985),
Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
July 2007, Journal of psychopharmacology (Oxford, England),
Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
August 2011, British journal of clinical pharmacology,
Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
October 1999, International journal of cardiology,
Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
June 1985, British journal of clinical practice. Supplement,
Jian-Wei Gu, and Giovani Gadonski, and Julie Wang, and Ian Makey, and Thomas H Adair
January 1989, JAMA,
Copied contents to your clipboard!