Retinal projections in the house musk shrew, Suncus murinus, as determined by anterograde transport of WGA-HRP. 1992

A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
Third Department of Anatomy, Okayama University Medical School, Japan.

Retinal projections in the house musk shrew (Suncus murinus) were determined by the anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Unilateral injection of WGA-HRP into the vitreous body resulted in the terminal labeling of the optic projections in the suprachiasmatic nucleus (SCH), the ventral (CGLv) and dorsal (CGLd) lateral geniculate nuclei, the intergeniculate leaflet (IGL), the pretectum, the superficial layers of the superior colliculus (CS), and the dorsal terminal nucleus (DTN) of the accessory optic system (AOS). Labeling of the SCH was bilateral, with ipsilateral predominance, and covered the whole dorsoventral extent of the nucleus. Immunohistochemical studies revealed that VIP-like immunoreactive neurons and fibers were present in almost all parts of the SCH. No hypothalamic regions other than the SCH received the optic fibers. The ipsilateral projections to the CGLv, CGLd, and IGL were sparse, and a considerable number of uncrossed retinal fibers were found in the pretectal olivary nucleus. No retinal projections to the lateral posterior thalamic nucleus (LP) were found. Ipsilateral optic fibers projected sparsely to the medial part of the CS. The AOS consisted of a small DTN with a very few crossed retinal projections but no lateral and medial terminal nuclei. In addition, the AOS had no inferior fascicle.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
April 1991, Neuroscience letters,
A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
July 1997, Experimental animals,
A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
June 1984, Kaibogaku zasshi. Journal of anatomy,
A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
April 1984, Jikken dobutsu. Experimental animals,
A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
January 2017, Lymphology,
A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
January 1997, Life sciences,
A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
November 1991, Naunyn-Schmiedeberg's archives of pharmacology,
A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
July 1993, Jikken dobutsu. Experimental animals,
A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
January 1984, Anatomischer Anzeiger,
A Tokunaga, and K Ono, and S Kondo, and H Tanaka, and K Kurose, and H Nagai
March 2005, Physiology & behavior,
Copied contents to your clipboard!