Effects of phenethyl isothiocyanate, a carcinogenesis inhibitor, on xenobiotic-metabolizing enzymes and nitrosamine metabolism in rats. 1992

Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, New Jersey 08855.

Phenethyl isothiocyanate (PEITC), a constituent of cruciferous vegetables, has been shown to inhibit chemical carcinogenesis, possibly due to its ability to block the activation or to enhance the detoxification of chemical carcinogens. The present study was conducted to elucidate the biochemical mechanisms involved by characterizing the effects of PEITC on phase I and phase II xenobiotic-metabolizing enzymes. A single dose of PEITC to F344 rats (1 mmol/kg) decreased the liver N-nitrosodimethylamine demethylase (NDMAd) activity (mainly due to P450 2E1) by 80% at 2 h and the activity of NDMAd remained decreased by 40% at 48 h after treatment. The liver pentoxyresorufin O-dealkylase (PROD) activity and P450 2B1 protein level were elevated 10- and 7-fold at 24 h after treatment respectively. The liver microsomal ethoxyresorufin O-dealkylase (EROD) (mainly due to P450 1A) and erythromycin N-demethylase (mainly due to P450 3A) activities were decreased at 2-12 h after treatment and recovered afterwards. The lung microsomal PROD and EROD activities were not significantly affected; whereas, the nasal microsomal PROD and EROD activities were decreased by 40-50%. After a treatment with PEITC, the rates of oxidative metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were decreased in liver microsomes by 40-60% at 2 h and recovered gradually; the rates in lung microsomes were markedly decreased by 60-70% at 2 h and remained at the decreased level at 24 h; and the rates in nasal mucosa microsomes were decreased gradually with the lowest activities observed at 18 h (50%) followed by a gradual recovery. Furthermore, the treatment with PEITC resulted in a maximal 5-fold increase of NAD(P)H:quinone oxidoreductase and 1.5-fold increase of glutathione S-transferase activities in the liver, but the activities of these two enzymes were not significantly affected in the lung and nasal mucosa. The sulfotransferase activity in the liver was decreased by 32-48% at 24-48 h after treatment; the nasal activity was increased by 1.8- to 2.5-fold, but the lung activity was not significantly changed. The hepatic UDP glucuronosyltransferase activity was slightly decreased at 2 h but slightly increased at 48 h after treatment, but no changes were observed for the lung and nasal activities. The study demonstrates that PEITC selectively affects xenobiotic-metabolizing enzymes in the liver, lung and nasal mucosa and it is especially effective in inhibiting the P450-dependent oxidation of NNK in the lung and of NDMA in the liver.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009602 Nitrosamines A class of compounds that contain a -NH2 and a -NO radical. Many members of this group have carcinogenic and mutagenic properties. Nitrosamine
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013861 Thiocyanates Organic derivatives of thiocyanic acid which contain the general formula R-SCN. Rhodanate,Rhodanates

Related Publications

Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
April 1998, Carcinogenesis,
Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
December 2003, Cancer letters,
Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
January 2000, Journal of applied toxicology : JAT,
Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
November 2002, Biological trace element research,
Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
January 2009, Drug metabolism reviews,
Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
February 2006, Carcinogenesis,
Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
October 1993, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
June 1997, Toxicology and applied pharmacology,
Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
December 2002, International journal of clinical pharmacology and therapeutics,
Z Guo, and T J Smith, and E Wang, and N Sadrieh, and Q Ma, and P E Thomas, and C S Yang
January 1998, Environmental toxicology and pharmacology,
Copied contents to your clipboard!