IFN-alpha sensitizes human umbilical vein endothelial cells to apoptosis induced by double-stranded RNA. 2004

William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.

The ability of endothelial cells to mount an efficient antiviral response is important in restricting viral dissemination and eliminating viral infection from the endothelium and surrounding tissues. We demonstrate that dsRNA, a molecular signature of viral infection, induced apoptosis in HUVEC, and priming with IFN-alpha shortened the time between when dsRNA was encountered and when apoptosis was initiated. IFN-alpha priming induced higher levels of mRNA for dsRNA-activated protein kinase, 2'5'-oligoadenylate synthetase, and Toll-like receptor 3, transcripts that encode dsRNA-responsive proteins. dsRNA induced activation of dsRNA-activated protein kinase and nuclear translocation of transcription factors RelA and IFN regulatory factor-3 in IFN-alpha-primed HUVECs before the activation of intrinsic and extrinsic apoptotic pathways. These changes did not occur in the absence of dsRNA, and apoptosis resulting from incubation with dsRNA occurred much later when cells were not primed with IFN-alpha. The entire population of IFN-alpha-primed HUVECs underwent nuclear translocation of RelA and IFN regulatory factor-3 in response to dsRNA, whereas less than one-half of the population responded with apoptosis. When IFN-alpha-primed HUVECs were coincubated with dsRNA and proteasome inhibitors, all HUVECs were rendered susceptible to dsRNA-induced apoptosis. These studies provide evidence that many endothelial cells that are alerted to the risk of infection by IFN-alpha would undergo apoptosis sooner in response to dsRNA than non-IFN-alpha-primed cells, and this would enhance the likelihood of eliminating infected cells prior to the production of progeny virions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
November 2000, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
July 2004, Vascular pharmacology,
William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
October 1997, Journal of immunology (Baltimore, Md. : 1950),
William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
October 2005, Proteomics,
William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
February 2002, The Journal of pharmacology and experimental therapeutics,
William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
February 2005, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
January 2013, European review for medical and pharmacological sciences,
William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
May 2017, Genetics and molecular research : GMR,
William J Kaiser, and Jonathan L Kaufman, and Margaret K Offermann
November 2014, Molecular medicine reports,
Copied contents to your clipboard!