Serological relationships among genotypic variants of betanodavirus. 2003

K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
Kamiura Station, Japan Sea-Farming Association, Oita 879-2602, Japan.

Betanodaviruses, the causative agents of viral nervous necrosis or viral encephalopathy and retinopathy, are divided into 4 genotypes based on the coat protein gene (RNA2). In the present study, serological relationships among betanodavirus genotypic variants were examined by virus neutralization tests using rabbit antisera raised against purified virions of strains representative of each genotype. All 20 isolates examined shared epitopes for neutralizing, but they fell into 3 major serotypes (A, B, C). This sero-grouping is in part consistent with their genotypes, i.e. Serotype A for striped jack nervous necrosis virus (SJNNV) genotype, Serotype B for tiger puffer nervous necrosis virus (TPNNV) genotype, and Serotype C for both redspotted grouper nervous necrosis virus (RGNNV) and barfin flounder nervous necrosis virus (BFNNV) genotypes. The serological relatedness between RGNNV and BFNNV genotypes may result from their relatively higher similarity in RNA2 sequences. In neutralization tests using antisera of kelp grouper Epinephelus moara, which were raised against recombinant coat proteins representing each genotype, anti-SJNNV and anti-TPNNV sera neutralized only the homologous strain, and anti-RGNNV and anti-BFNNV sera reacted with both RGNNV and BFNNV strains. The present serological findings will be important in investigating the infectivity and host-specificity of betanodaviruses and in developing vaccines for the disease.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005393 Fish Diseases Diseases of freshwater, marine, hatchery or aquarium fish. This term includes diseases of both teleosts (true fish) and elasmobranchs (sharks, rays and skates). Disease, Fish,Diseases, Fish,Fish Disease
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
September 1953, Bacteriological reviews,
K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
December 1974, Infection and immunity,
K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
April 1953, Bollettino della Societa italiana di biologia sperimentale,
K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
February 1980, Canadian journal of microbiology,
K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
December 1976, Japanese journal of microbiology,
K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
January 1956, The Cornell veterinarian,
K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
January 1982, Cellular and molecular biology,
K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
January 1957, Advances in virus research,
K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
January 1967, The Journal of general virology,
K Morit, and T Mangyoku, and T Iwamoto, and M Arimoto, and S Tanaka, and T Nakai
April 1982, Journal of clinical microbiology,
Copied contents to your clipboard!