Firing patterns of type II spiral ganglion neurons in vitro. 2004

Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
Department of Cell Biology and Neuroscience, Rutgers University, Nelson Laboratories, Piscataway, New Jersey 08854-8082, USA.

Type I and type II spiral ganglion neurons convey auditory information from the sensory receptors in the cochlea to the CNS. The numerous type I neurons have been extensively characterized, but the small population of type II neurons with their unmyelinated axons are undetectable with most recording methods. Despite the paucity of information about the type II neurons, it is clear that they must have a significant role in sound processing because they innervate the large number of outer hair cells that are critical for maintaining normal responses to stimuli. To elucidate the function of type II neurons, we have developed an approach for studying their electrophysiological features in vitro. Type II neurons obtained from postnatal day 6-7 mice displayed distinctly different firing properties than type I neurons. They showed slower accommodation, lower action potential thresholds, and more prolonged responses to depolarizing current injection than the type I neurons. These differences were most evident in neurons from the basal, high-frequency region of the cochlea. The basal type I neurons displayed uniformly fast firing features, whereas the basal type II neurons showed particularly slow accommodation and responses to depolarization. Interestingly, neurons from the apical, low-frequency region of the cochlea showed the opposite trend. These data suggest that the type I and type II neurons have specialized electrophysiological characteristics tailored to their different roles in auditory signal processing. In particular, the type II neuron properties are consistent with cells in other sensory systems that receive convergent synaptic input for high-sensitivity stimulus detection.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013136 Spiral Ganglion The sensory ganglion of the COCHLEAR NERVE. The cells of the spiral ganglion send fibers peripherally to the cochlear hair cells and centrally to the COCHLEAR NUCLEI of the BRAIN STEM. Ganglion of Corti,Auditory Ganglion,Spiral Ganglia,Auditory Ganglions,Ganglia, Spiral,Ganglion, Auditory,Ganglion, Spiral,Ganglions, Auditory

Related Publications

Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
March 1997, Journal of neurophysiology,
Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
July 2015, Cell and tissue research,
Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
December 1988, The Journal of comparative neurology,
Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
July 2010, Neuroscience letters,
Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
September 1986, Brain research,
Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
August 1993, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
March 2005, Journal of the Association for Research in Otolaryngology : JARO,
Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
August 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
July 2014, The Journal of comparative neurology,
Michael A Reid, and Jacqueline Flores-Otero, and Robin L Davis
May 1971, Journal of neurophysiology,
Copied contents to your clipboard!