Specificity of the endonuclease activity of the baculovirus alkaline nuclease for single-stranded DNA. 2004

Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804, USA.

The Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) alkaline nuclease (AN) likely participates in the maturation of virus genomes and in DNA recombination. AcMNPV AN was expressed in a recombinant baculovirus as a His -tagged fusion and obtained in pure form (*AN) or as a (6)complex with the baculoviral single-stranded DNA-binding protein LEF-3 (*AN/L3). Both AN preparations possessed potent 5' --> 3'-exonuclease and weak endonuclease activities. Mutant *AN(S146A)/L3 with a change from serine to alanine at position 146 in a conservative motif was impaired in both activities. This proved that the endonuclease is an intrinsic activity of baculovirus AN. The AN endonuclease showed specificity for single-stranded DNA and converted supercoiled plasmid DNA (replicative form I, RFI) into the open circular form (RFII) by a single strand break. Plasmid DNA relaxed with topoisomerase I was resistant to *AN/L3 indicating that the partially single-stranded regions in negatively supercoiled molecules served as targets for the endonuclease. Unwinding the supercoiled DNA with ethidium bromide also made DNA resistant to AN/L3. In reactions with nicked circular DNA (RFII), AN and AN/L3 hydrolyzed exonucleolytically the broken strand or cut endonucleolytically the intact strand at the position opposite the nick (gap). When LEF-3 was added to the assay, the balance between the exonucleolytic and endonucleolytic modes of hydrolysis shifted in favor of the exonuclease. The data suggest that the AN endonuclease may digest the intermediates in replication and recombination at positions of structural irregularities in DNA duplexes, whereas LEF-3 may further regulate processing of the intermediates by AN via the endonuclease and exonuclease pathways.

UI MeSH Term Description Entries
D007313 Insecta Members of the phylum ARTHROPODA composed or organisms characterized by division into three parts: head, thorax, and abdomen. They are the dominant group of animals on earth with several hundred thousand different kinds. Three orders, HEMIPTERA; DIPTERA; and SIPHONAPTERA; are of medical interest in that they cause disease in humans and animals. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p1). Insects,Insect
D007364 Intercalating Agents Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA. Intercalating Agent,Intercalating Ligand,Intercalative Compound,Intercalator,Intercalators,Intercalating Ligands,Intercalative Compounds,Agent, Intercalating,Agents, Intercalating,Compound, Intercalative,Compounds, Intercalative,Ligand, Intercalating,Ligands, Intercalating
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
April 2010, DNA repair,
Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
July 2000, Journal of virology,
Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
April 1973, Biochimica et biophysica acta,
Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
December 1977, The Journal of biological chemistry,
Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
March 1970, Canadian journal of biochemistry,
Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
May 1982, Nucleic acids research,
Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
July 1998, Doklady Akademii nauk,
Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
March 2007, Virology,
Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
December 1976, European journal of biochemistry,
Victor S Mikhailov, and Kazuhiro Okano, and George F Rohrmann
October 2004, Journal of virology,
Copied contents to your clipboard!