Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). 1992

R Schreck, and K Albermann, and P A Baeuerle
Laboratory for Molecular Biology, Ludwig-Maximilians-University, Martinsried, Germany.

NF-kappa B is a multiprotein complex that can activate a great variety of genes involved in early defence reactions of higher organisms. In nonstimulated cells, NF-kappa B resides in the cytoplasm in an inactive complex with the inhibitor I kappa B. Pathogenic stimuli cause release of I kappa B and allow NF-kappa B to enter the nucleus, bind to DNA control elements and, thereby, induce the synthesis of mRNA. A puzzling feature of NF-kappa B is that its activation is triggered by a great variety of agents. These include the cytokines interleukin-1 and tumor necrosis factor, viruses, double-stranded RNA, endotoxins, phorbol esters, UV light and ionizing radiation. We recently found that also low concentrations of H2O2 activate NF-kappa B and that various antioxidants prevent the induction by H2O2. Subsequent analysis revealed that antioxidants not only suppress the activation of NF-kappa B by H2O2 but by all other inducers tested so far. In this review, we will discuss the evidences that NF-kappa B is an oxidative stress-responsive transcription factor of higher eukaryotic cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

R Schreck, and K Albermann, and P A Baeuerle
March 2007, Molecular and cellular biochemistry,
R Schreck, and K Albermann, and P A Baeuerle
December 1998, La Revue de medecine interne,
R Schreck, and K Albermann, and P A Baeuerle
February 1998, Journal of immunology (Baltimore, Md. : 1950),
R Schreck, and K Albermann, and P A Baeuerle
October 2000, Biochemical pharmacology,
R Schreck, and K Albermann, and P A Baeuerle
February 2007, Expert opinion on therapeutic targets,
R Schreck, and K Albermann, and P A Baeuerle
March 2007, Clinical oncology (Royal College of Radiologists (Great Britain)),
R Schreck, and K Albermann, and P A Baeuerle
August 1996, FEBS letters,
R Schreck, and K Albermann, and P A Baeuerle
November 1998, Journal of clinical pharmacology,
R Schreck, and K Albermann, and P A Baeuerle
March 2001, The Journal of nutrition,
Copied contents to your clipboard!