Classes and narrowing selectivity of olfactory receptor neurons of Xenopus laevis tadpoles. 2004

Ivan Manzini, and Detlev Schild
Physiologisches Institut, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.

In olfactory receptor neurons (ORNs) of aquatic animals amino acids have been shown to be potent stimuli. Here we report on calcium imaging experiments in slices of the olfactory mucosa of Xenopus laevis tadpoles. We were able to determine the response profiles of 283 ORNs to 19 amino acids, where one profile comprises the responses of one ORN to 19 amino acids. 204 out of the 283 response profiles differed from each other. 36 response spectra occurred more than once, i.e., there were 36 classes of ORNs identically responding to the 19 amino acids. The number of ORNs that formed a class ranged from 2 to 13. Shape and duration of amino acid-elicited [Ca2+]i transients showed a high degree of similarity upon repeated stimulation with the same amino acid. Different amino acids, however, in some cases led to clearly distinguishable calcium responses in individual ORNs. Furthermore, ORNs clearly appeared to gain selectivity over time, i.e., ORNs of later developmental stages responded to less amino acids than ORNs of earlier stages. We discuss the narrowing of ORN selectivity over stages in the context of expression of olfactory receptors.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000601 Amino Acids, Essential Amino acids that are not synthesized by the human body in amounts sufficient to carry out physiological functions. They are obtained from dietary foodstuffs. Essential Amino Acid,Essential Amino Acids,Acid, Essential Amino,Acids, Essential Amino,Amino Acid, Essential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012903 Smell The ability to detect scents or odors, such as the function of OLFACTORY RECEPTOR NEURONS. Olfaction,Sense of Smell,Smell Sense
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D018034 Olfactory Receptor Neurons Neurons in the OLFACTORY EPITHELIUM with proteins (RECEPTORS, ODORANT) that bind, and thus detect, odorants. These neurons send their DENDRITES to the surface of the epithelium with the odorant receptors residing in the apical non-motile cilia. Their unmyelinated AXONS synapse in the OLFACTORY BULB of the BRAIN. Neurons, Olfactory Receptor,Olfactory Receptor Cells,Olfactory Receptor Neuron,Olfactory Sensory Cells,Olfactory Sensory Cilia,Olfactory Sensory Neurons,Cell, Olfactory Receptor,Cell, Olfactory Sensory,Cells, Olfactory Receptor,Cells, Olfactory Sensory,Cilia, Olfactory Sensory,Cilias, Olfactory Sensory,Neuron, Olfactory Receptor,Neuron, Olfactory Sensory,Neurons, Olfactory Sensory,Olfactory Receptor Cell,Olfactory Sensory Cell,Olfactory Sensory Cilias,Olfactory Sensory Neuron,Receptor Cell, Olfactory,Receptor Cells, Olfactory,Receptor Neuron, Olfactory,Receptor Neurons, Olfactory,Sensory Cell, Olfactory,Sensory Cells, Olfactory,Sensory Cilia, Olfactory,Sensory Cilias, Olfactory,Sensory Neuron, Olfactory,Sensory Neurons, Olfactory
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Ivan Manzini, and Detlev Schild
December 1995, Neuron,
Ivan Manzini, and Detlev Schild
October 2000, Cell and tissue research,
Ivan Manzini, and Detlev Schild
May 2001, Chemical senses,
Ivan Manzini, and Detlev Schild
September 2001, The Journal of experimental biology,
Ivan Manzini, and Detlev Schild
September 2003, The Journal of comparative neurology,
Ivan Manzini, and Detlev Schild
January 2003, The European journal of neuroscience,
Ivan Manzini, and Detlev Schild
December 2001, The Journal of comparative neurology,
Ivan Manzini, and Detlev Schild
July 1974, Comparative biochemistry and physiology. B, Comparative biochemistry,
Ivan Manzini, and Detlev Schild
August 1999, The Anatomical record,
Copied contents to your clipboard!