Protein phosphorylation on tyrosine in bacteria. 2004

Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69007 Lyon, France. aj.cozzone@ibcp.fr

Protein phosphorylation on tyrosine has been demonstrated to occur in a wide array of bacterial species and appears to be ubiquitous among prokaryotes. This covalent modification is catalyzed by autophosphorylating ATP-dependent protein-tyrosine kinases that exhibit structural and functional features similar, but not identical, to those of their eukaryotic counterparts. The reversibility of the reaction is effected by two main classes of protein-tyrosine phosphatases: one includes conventional eukaryotic-like phosphatases and dual-specific phosphatases, and the other comprises acidic phosphatases of low molecular weight. Less frequently, a third class concerns enzymes of the polymerase-histidinol phosphatase type. In terms of genomic organization, the genes encoding a protein-tyrosine phosphatase and a protein-tyrosine kinase in a bacterial species are most often located next to each other on the chromosome. In addition, these genes are generally part of large operons that direct the coordinate synthesis of proteins involved in the production or regulation of exopolysaccharides and capsular polysaccharides. Recent data provide evidence that there exists a direct relationship between the reversible phosphorylation of proteins on tyrosine and the production of these polysaccharidic polymers, which are also known to be important virulence factors. Therefore, a new concept has emerged suggesting the existence of a biological link between protein-tyrosine phosphorylation and bacterial pathogenicity.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D017027 Protein Tyrosine Phosphatases An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis. Phosphotyrosine Phosphatase,Protein-Tyrosine-Phosphatase,Tyrosyl Phosphoprotein Phosphatase,PTPase,Phosphotyrosyl Protein Phosphatase,Protein-Tyrosine Phosphatase,Phosphatase, Phosphotyrosine,Phosphatase, Phosphotyrosyl Protein,Phosphatase, Protein-Tyrosine,Phosphatase, Tyrosyl Phosphoprotein,Phosphatases, Protein Tyrosine,Phosphoprotein Phosphatase, Tyrosyl,Protein Phosphatase, Phosphotyrosyl,Protein Tyrosine Phosphatase,Tyrosine Phosphatases, Protein
D037521 Virulence Factors Those components of an organism that determine its capacity to cause disease but are not required for its viability per se. Two classes have been characterized: TOXINS, BIOLOGICAL and surface adhesion molecules that effect the ability of the microorganism to invade and colonize a host. (From Davis et al., Microbiology, 4th ed. p486) Pathogenicity Factor,Pathogenicity Factors,Virulence Factor,Factor, Pathogenicity,Factor, Virulence,Factors, Pathogenicity,Factors, Virulence

Related Publications

Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
December 1989, Current opinion in cell biology,
Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
July 1994, FEMS microbiology letters,
Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
May 2008, Antioxidants & redox signaling,
Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
January 2021, Frontiers in cellular and infection microbiology,
Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
December 1996, Nihon Sanka Fujinka Gakkai zasshi,
Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
December 1994, FEMS microbiology letters,
Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
January 2005, Journal of molecular microbiology and biotechnology,
Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
April 1997, Journal of bacteriology,
Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
February 1988, Proceedings of the National Academy of Sciences of the United States of America,
Alain J Cozzone, and Christophe Grangeasse, and Patricia Doublet, and Bertrand Duclos
January 1995, Molecular and cellular biochemistry,
Copied contents to your clipboard!