Evolution of linear plasmids. 1992

F Kempken, and J Hermanns, and H D Osiewacz
Ruhr-Universität Bochum, Lehrstuhl für Allgemeine Botanik, FRG.

Linear plasmids are genetic elements commonly found in yeast, filamentous fungi, and higher plants. In contrast to all other plasmids they possess terminal inverted repeats and terminal bound proteins and encode their own DNA and RNA polymerases. Here we present alignments of conserved amino acid sequences of both the DNA and RNA polymerases encoded by those linear plasmids for which DNA sequence data are available. Additionally these sequences are compared to a number of polymerases encoded by related viral and cellular entities. Phylogenetic trees have been established for both types of polymerases. These trees appear to exhibit very similar subgroupings, proving the accuracy of the method employed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage

Related Publications

F Kempken, and J Hermanns, and H D Osiewacz
April 1997, Applied microbiology and biotechnology,
F Kempken, and J Hermanns, and H D Osiewacz
January 2016, Genome biology and evolution,
F Kempken, and J Hermanns, and H D Osiewacz
August 1995, FEMS microbiology letters,
F Kempken, and J Hermanns, and H D Osiewacz
January 1980, Uspekhi sovremennoi biologii,
F Kempken, and J Hermanns, and H D Osiewacz
October 1994, Current genetics,
F Kempken, and J Hermanns, and H D Osiewacz
June 1985, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
F Kempken, and J Hermanns, and H D Osiewacz
December 1993, Molecular microbiology,
F Kempken, and J Hermanns, and H D Osiewacz
January 1998, Antonie van Leeuwenhoek,
F Kempken, and J Hermanns, and H D Osiewacz
April 1997, Journal of bacteriology,
F Kempken, and J Hermanns, and H D Osiewacz
February 1992, Current genetics,
Copied contents to your clipboard!