A novel beta-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. 2004

Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA. mobashery@nd.edu

Treponema pallidum, the causative agent of syphilis, is sensitive to penicillins. Yet, an abundant membrane-bound protein of this organism, Tp47, turns over penicillins. It is shown herein that the turnover process is a hydrolytic reaction that results in the corresponding penicilloates, products that have their beta-lactam bonds hydrolyzed. This is the reaction of beta-lactamases, bona fide resistance enzymes to beta-lactam antibiotics. Remarkably, the x-ray structure of Tp47 bears no resemblance to any other beta-lactamases or the related penicillin-binding proteins. Furthermore, evidence is presented that the reaction of Tp47 takes place in the absence of the zinc ion and does not involve intermediary acyl enzyme species. Hence, the beta-lactamase activity of Tp47 is the fifth known mechanism for turnover of beta-lactam antibiotics. Tp47 also exhibits a penicillin binding reaction, in the process of which the enzyme is covalently modified in the active site. The two reactions take place in two different active sites, and the events of the beta-lactamase activity are over 2,000-fold more rapid than the penicillin binding reaction. The level of beta-lactamase activity is high and is held back only by a strong product-inhibition component to the catalytic process. If natural selection would result in a mutant variant of Tp47 that overcomes product inhibition for the beta-lactamase activity, a novel bona fide resistance to penicillins will emerge in Treponema, which will be a disconcerting clinical development. The physiological functions of Tp47 are not known, but it is likely that this is at least a bifunctional enzyme involved in the processing of the Treponema peptidoglycan as a substrate.

UI MeSH Term Description Entries
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D010406 Penicillins A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065) Antibiotics, Penicillin,Penicillin,Penicillin Antibiotics
D010458 Peptidyl Transferases Acyltransferases that use AMINO ACYL TRNA as the amino acid donor in formation of a peptide bond. There are ribosomal and non-ribosomal peptidyltransferases. Peptidyl Transferase,Peptidyl Translocase,Peptidyl Translocases,Peptidyltransferase,Transpeptidase,Transpeptidases,Peptidyltransferases,Transferase, Peptidyl,Transferases, Peptidyl,Translocase, Peptidyl,Translocases, Peptidyl
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002267 Muramoylpentapeptide Carboxypeptidase Enzyme which catalyzes the peptide cross-linking of nascent CELL WALL; PEPTIDOGLYCAN. Carboxypeptidase Transpeptidase,Carboxypeptidase, Muramoylpentapeptide,Transpeptidase, Carboxypeptidase
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
November 1994, Proceedings of the National Academy of Sciences of the United States of America,
Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
September 2000, The Journal of biological chemistry,
Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
April 1989, Infection and immunity,
Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
November 1987, Journal of bacteriology,
Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
January 1988, Reviews of infectious diseases,
Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
November 2002, The Journal of biological chemistry,
Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
April 1965, JAMA,
Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
February 1972, American journal of ophthalmology,
Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
December 1983, The Journal of antibiotics,
Joo Young Cha, and Akihiro Ishiwata, and Shahriar Mobashery
July 1953, American journal of syphilis, gonorrhea, and venereal diseases,
Copied contents to your clipboard!