Gamma-hydroxybutyric acid, unlike gamma-aminobutyric acid, does not stimulate Gi/Go proteins in rat brain membranes. 2004

Yuji Odagaki, and Toshio Yamauchi
Department of Psychiatry, Saitama Medical School, Saitama, Japan. odagaki@saitama-med.ac.jp

gamma-Hydroxybutyric acid is a naturally occurring substance that may act as a neurotransmitter or neuromodulator to elicit several biological effects. Although the existence of a specific gamma-hydroxybutyric acid receptor has been postulated, the receptor protein itself has not been cloned yet. The current study was designed to elucidate whether gamma-hydroxybutyric acid receptors are functionally coupled with heterotrimeric G-proteins, especially Gi/Go family, by means of high-affinity GTPase activity and guanosine 5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding assays in rat brain membranes. The stimulatory effects of GABAB receptor activation were always determined in parallel as a positive control. The selective GABAB receptor agonist (+/-)-baclofen stimulated the high-affinity GTPase activity in cerebral cortical, hippocampal, and striatal membranes, whereas gamma-hydroxybutyric acid was inactive up to 1 mM in these brain regions. The optimum assay conditions for [35S]GTPgammaS binding to detect a receptor-mediated activation of G-proteins at the greatest signal to noise ratio were then probed as to the concentrations of constituents in the assay mixture (GDP, MgCl2, and NaCl) and incubation period. Even under such an optimized experimental condition, [35S]GTPgammaS binding was not altered by gamma-hydroxybutyric acid in the membranes prepared from cerebral cortex or hippocampus. On the other hand, the specific [35S]GTPgammaS binding was increased by GABAB receptor agonists in a concentration-dependent manner, which was competitively inhibited by CGP54626, a selective GABAB receptor antagonist. These results indicate that gamma-hydroxybutyric acid receptors, if any, are not associated with G-proteins, at least Gi/Go family.

UI MeSH Term Description Entries
D008297 Male Males
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006885 Hydroxybutyrates Salts and esters of hydroxybutyric acid. Hydroxybutyric Acid Derivatives,Hydroxybutyric Acids,Acid Derivatives, Hydroxybutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001418 Baclofen A GAMMA-AMINOBUTYRIC ACID derivative that is a specific agonist of GABA-B RECEPTORS. It is used in the treatment of MUSCLE SPASTICITY, especially that due to SPINAL CORD INJURIES. Its therapeutic effects result from actions at spinal and supraspinal sites, generally the reduction of excitatory transmission. Baclophen,Chlorophenyl GABA,Apo-Baclofen,Atrofen,Ba-34,647,Ba-34647,Baclofen AWD,Baclofène-Irex,Baclospas,CIBA-34,647-BA,Clofen,Gen-Baclofen,Genpharm,Lebic,Lioresal,Liorésal,Nu-Baclo,PCP-GABA,PMS-Baclofen,beta-(Aminomethyl)-4-chlorobenzenepropanoic Acid,beta-(p-Chlorophenyl)-gamma-aminobutyric Acid,AWD, Baclofen,Apo Baclofen,ApoBaclofen,Ba34,647,Ba34647,Baclofène Irex,BaclofèneIrex,CIBA34,647BA,GABA, Chlorophenyl,Gen Baclofen,GenBaclofen,Nu Baclo,NuBaclo,PMS Baclofen,PMSBaclofen
D016244 Guanosine 5'-O-(3-Thiotriphosphate) Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes. GTP gamma S,Guanosine 5'-(gamma-S)Triphosphate,gamma-Thio-GTP,GTPgammaS,Guanosine 5'-(3-O-Thio)Triphosphate,gamma S, GTP,gamma Thio GTP
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Yuji Odagaki, and Toshio Yamauchi
August 1984, Biochemical pharmacology,
Yuji Odagaki, and Toshio Yamauchi
January 1969, Biochemical pharmacology,
Yuji Odagaki, and Toshio Yamauchi
February 1982, Journal of neurochemistry,
Yuji Odagaki, and Toshio Yamauchi
January 1982, Ukrainskii biokhimicheskii zhurnal (1978),
Yuji Odagaki, and Toshio Yamauchi
January 1987, Journal of neurochemistry,
Yuji Odagaki, and Toshio Yamauchi
May 1980, Biochemical pharmacology,
Copied contents to your clipboard!