Endothelin causes contraction of human esophageal muscularis mucosae through interaction with both ETA and ETB receptors. 2004

Shih-Che Huang, and Bee-Song Chang
Department of Internal Medicine, Tzu Chi General Hospital and Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien 970, Taiwan. shihche@mail.tcu.edu.tw

Endothelin (ET) causes contraction of the muscularis mucosae in the guinea pig esophagus, but its role in the human esophagus remains unknown. To investigate effects of ET in the human esophagus, we measured contraction of isolated human esophageal muscularis mucosae strips caused by ET related peptides and binding of 125I-ET-1 to cell membranes prepared from the human esophageal muscularis mucosae. Autoradiography demonstrated specific binding of 125I-ET-1 to the muscularis mucosae and muscularis propria (muscularis externa) of the human esophagus. ET-1 caused tetrodotoxin and atropine-insensitive contraction of muscularis mucosae strips. In terms of the maximal tension of contraction, ET-1 and ET-2 were equal in efficacy. The relative potencies for ET related peptides to cause contraction were ET-1=ET-2>ET-3>sarafotoxin S6c (SX6c), an ETB receptor agonist. ET-1 caused contraction was mildly inhibited by BQ-123, an ETA receptor antagonist, and not by BQ-788, an ETB receptor antagonist. It was moderately inhibited by the combination of both antagonists, indicating synergistic inhibition. Furthermore, desensitization to SX6c with SX6c pretreatment failed to abolish the contractile response to ET-1, which was completely inhibited by BQ-123. These indicate the involvement of both ETA and ETB receptors in the contraction. Binding of 125I-ET-1 to cell membranes of the muscularis mucosae was saturable and specific. Analysis of dose-inhibition curves demonstrated the presence of ETA and ETB receptors. This study demonstrates that, the muscularis mucosae of the human esophagus, similar to that of the guinea pig esophagus, possesses both ETA and ETB receptors mediating muscle contraction.

UI MeSH Term Description Entries
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D010880 Piperidines A family of hexahydropyridines.
D004947 Esophagus The muscular membranous segment between the PHARYNX and the STOMACH in the UPPER GASTROINTESTINAL TRACT.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D044022 Receptor, Endothelin A A subtype of endothelin receptor found predominantly in the VASCULAR SMOOTH MUSCLE. It has a high affinity for ENDOTHELIN-1 and ENDOTHELIN-2. Endothelin A Receptors,Endothelin Receptors Type A,Receptor, Endothelin-1,Endothelin A Receptor,Endothelin-1 Receptor,Receptor, Endothelin 1,Receptors, Endothelin A

Related Publications

Shih-Che Huang, and Bee-Song Chang
May 2002, Regulatory peptides,
Shih-Che Huang, and Bee-Song Chang
March 1994, Circulation,
Shih-Che Huang, and Bee-Song Chang
May 1997, Journal of hepatology,
Shih-Che Huang, and Bee-Song Chang
May 1994, European journal of pharmacology,
Shih-Che Huang, and Bee-Song Chang
January 1993, Journal of cardiovascular pharmacology,
Shih-Che Huang, and Bee-Song Chang
November 1992, British journal of pharmacology,
Shih-Che Huang, and Bee-Song Chang
April 1994, Biochemical and biophysical research communications,
Shih-Che Huang, and Bee-Song Chang
February 1995, Biochemical and biophysical research communications,
Shih-Che Huang, and Bee-Song Chang
December 1995, Japanese journal of pharmacology,
Shih-Che Huang, and Bee-Song Chang
January 1992, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!