Effects of medroxyprogesterone acetate (MAP) on ovarian antral follicle development, gonadotrophin secretion and response to ovulation induction with gonadotrophin-releasing hormone (GnRH) in seasonally anoestrous ewes. 2004

P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Sask, Saskatoon, Canada S7N 5B4.

When ovulation is induced with gonadotrophin-releasing hormone (GnRH) in anoestrous ewes, a proportion of animals fail to form normal (full-lifespan) corpora lutea (CL). Progesterone treatment before GnRH prevents luteal inadequacy. It remains uncertain whether a similar effect, achieved with medroxyprogesterone acetate (MAP) from intravaginal sponges, is mediated by influences on growing ovarian follicles and/or secretion of gonadotrophic hormones, before and after GnRH treatment. Two experiments were performed, on 13 and 11 anoestrous Western white-faced ewes, respectively. Seven and six ewes, respectively, received MAP-containing sponges (60 mg) for 14 days; the remaining ewes served as untreated controls. To test the effect of timing of GnRH administration after pre-treatment with MAP-releasing sponges, GnRH injections (250 ng every 2h for 24h followed by a bolus injection of 125 microg of GnRH i.v.) were given either immediately (Experiment 1) or 24h after sponge removal in the treated ewes (Experiment 2). Ovarian follicular dynamics (follicles reaching >or=5mm in size) and development of luteal structures were monitored using transrectal ultrasonography. In Experiment 1, the mean ovulation rate (0.7+/-0.3 and 1.0+/-0.4) and proportion of ovulating ewes (57 and 67%, respectively) did not vary (P>0.05) between MAP-treated and control ewes. Normal (full-lifespan) CL were detected in 29% of treated and 67% of control ewes (P>0.05). In Experiment 2, the mean ovulation rate (2.3+/-0.2 and 1.2+/-0.6; P<0.05) and percentage of ewes with normal (full-lifespan) CL (100 and 40%, respectively; P<0.10) were greater in the treated compared to control ewes. In Experiment 1, the mean peak concentration of the GnRH-induced LH surge was lower (P<0.05) in MAP-treated than in control ewes. There were no significant differences between MAP-treated and control ewes in the characteristics of follicular waves, mean daily serum FSH concentrations, and secretory parameters of LH/FSH, based on intensive blood sampling conducted 1 day before sponging and 1 day before sponge removal. It is concluded that treatment with MAP has no effect on the tonic secretion of LH/FSH or follicular wave development in anoestrous ewes. However, the GnRH-stimulated LH discharge was attenuated in the ewes that received MAP-impregnated sponges for 14 days and were treated with GnRH immediately after sponge withdrawal. Ovulatory response and CL formation were increased when GnRH was administered 24 h after sponge removal.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010062 Ovulation Induction Techniques for the artifical induction of ovulation, the rupture of the follicle and release of the ovum. Ovarian Stimulation,Ovarian Stimulations,Stimulation, Ovarian,Stimulations, Ovarian
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006062 Gonadotropins Hormones that stimulate gonadal functions such as GAMETOGENESIS and sex steroid hormone production in the OVARY and the TESTIS. Major gonadotropins are glycoproteins produced primarily by the adenohypophysis (GONADOTROPINS, PITUITARY) and the placenta (CHORIONIC GONADOTROPIN). In some species, pituitary PROLACTIN and PLACENTAL LACTOGEN exert some luteotropic activities. Gonadotropin
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D000780 Anestrus A state of sexual inactivity in female animals exhibiting no ESTROUS CYCLE. Causes of anestrus include pregnancy, presence of offspring, season, stress, and pathology.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
June 1988, The Journal of endocrinology,
P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
January 1982, Journal of reproduction and fertility,
P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
September 1983, Clinical reproduction and fertility,
P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
April 1994, Australian veterinary journal,
P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
August 1983, Australian veterinary journal,
P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
November 1982, The Canadian veterinary journal = La revue veterinaire canadienne,
P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
October 1987, Theriogenology,
P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
July 1978, The Journal of endocrinology,
P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
December 1973, Journal of reproduction and fertility,
P M Bartlewski, and J Aravindakshan, and A P Beard, and M L Nelson, and M Batista-Arteaga, and S J Cook, and N C Rawlings
November 1988, Journal of reproduction and fertility,
Copied contents to your clipboard!