Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. 2004

Peter J Havel
Department of Nutrition, University of California, Davis, Davis, California 95616, USA. pjhavel@ucdavis.edu

Hormones produced by adipose tissue play a critical role in the regulation of energy intake, energy expenditure, and lipid and carbohydrate metabolism. This review will address the biology, actions, and regulation of three adipocyte hormones-leptin, acylation stimulating protein (ASP), and adiponectin-with an emphasis on the most recent literature. The main biological role of leptin appears to be adaptation to reduced energy availability rather than prevention of obesity. In addition to the well-known consequences of absolute leptin deficiency, subjects with heterozygous leptin gene mutations have low circulating leptin levels and increased body adiposity. Leptin treatment dramatically improves metabolic abnormalities (insulin resistance and hyperlipidemia) in patients with relative leptin deficiency due to lipoatrophy. Leptin production is primarily regulated by insulin-induced changes of adipocyte metabolism. Dietary fat and fructose, which do not increase insulin secretion, lead to reduced leptin production, suggesting a mechanism for high-fat/high-sugar diets to increase energy intake and weight gain. ASP increases the efficiency of triacylglycerol synthesis in adipocytes leading to enhanced postprandial lipid clearance. In mice, ASP deficiency results in reduced body fat, obesity resistance, and improved insulin sensitivity. Adiponectin production is stimulated by thiazolidinedione agonists of peroxisome proliferator-activated receptor-gamma and may contribute to increased insulin sensitivity. Adiponectin and leptin cotreatment normalizes insulin action in lipoatrophic insulin-resistant animals. These effects may be mediated by AMP kinase-induced fat oxidation, leading to reduced intramyocellular and liver triglyceride content. The production of all three hormones is influenced by nutritional status. These hormones, the pathways controlling their production, and their receptors are promising targets for managing obesity, hyperlipidemia, and insulin resistance.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017667 Adipocytes Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals. Fat Cells,Lipocytes,Adipocyte,Cell, Fat,Cells, Fat,Fat Cell,Lipocyte
D050260 Carbohydrate Metabolism Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES. Metabolism, Carbohydrate
D050356 Lipid Metabolism Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS. Metabolism, Lipid
D020738 Leptin A 16-kDa peptide hormone secreted from WHITE ADIPOCYTES. Leptin serves as a feedback signal from fat cells to the CENTRAL NERVOUS SYSTEM in regulation of food intake, energy balance, and fat storage. Ob Protein,Obese Protein,Ob Gene Product,Obese Gene Product,Gene Product, Ob,Gene Product, Obese

Related Publications

Peter J Havel
October 2023, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Peter J Havel
August 1977, The American journal of clinical nutrition,
Peter J Havel
February 1982, Nihon rinsho. Japanese journal of clinical medicine,
Peter J Havel
February 1982, Nihon rinsho. Japanese journal of clinical medicine,
Peter J Havel
February 1982, Nihon rinsho. Japanese journal of clinical medicine,
Peter J Havel
February 1982, Nihon rinsho. Japanese journal of clinical medicine,
Peter J Havel
January 1974, The Mount Sinai journal of medicine, New York,
Peter J Havel
January 2016, Experientia supplementum (2012),
Copied contents to your clipboard!