Optical recording of action potentials with second-harmonic generation microscopy. 2004

Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.

Nonlinear microscopy has proven to be essential for neuroscience investigations of thick tissue preparations. However, the optical recording of fast (approximately 1 msec) cellular electrical activity has never until now been successfully combined with this imaging modality. Through the use of second-harmonic generation microscopy of primary Aplysia neurons in culture labeled with 4-[4-(dihexylamino)phenyl][ethynyl]-1-(4-sulfobutyl)pyridinium (inner salt), we optically recorded action potentials with 0.833 msec temporal and 0.6 microm spatial resolution on soma and neurite membranes. Second-harmonic generation response as a function of change in membrane potential was found to be linear with a signal change of approximately 6%/100 mV. The signal-to-noise ratio was approximately 1 for single-trace action potential recordings but was readily increased to approximately 6-7 with temporal averaging of approximately 50 scans. Photodamage was determined to be negligible by observing action potential characteristics, cellular resting potential, and gross cellular morphology during and after laser illumination. High-resolution (micrometer scale) optical recording of membrane potential activity by previous techniques has been limited to imaging depths an order of magnitude less than nonlinear methods. Because second-harmonic generation is capable of imaging up to approximately 400 microm deep into intact tissue with submicron resolution and little out-of-focus photodamage or bleaching, its ability to record fast electrical activity should prove valuable to future electrophysiology studies.

UI MeSH Term Description Entries
D008853 Microscopy The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe. Compound Microscopy,Hand-Held Microscopy,Light Microscopy,Optical Microscopy,Simple Microscopy,Hand Held Microscopy,Microscopy, Compound,Microscopy, Hand-Held,Microscopy, Light,Microscopy, Optical,Microscopy, Simple
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity

Related Publications

Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
February 2006, Proceedings of the National Academy of Sciences of the United States of America,
Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
September 2008, Optics express,
Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
April 2001, Journal of microscopy,
Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
November 2003, Chemphyschem : a European journal of chemical physics and physical chemistry,
Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
June 2004, Optics express,
Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
June 2022, Biomedical optics express,
Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
October 2001, Micron (Oxford, England : 1993),
Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
February 2006, Optics express,
Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
January 2016, Methods in cell biology,
Daniel A Dombeck, and Mireille Blanchard-Desce, and Watt W Webb
February 2016, Biomedical optics express,
Copied contents to your clipboard!