Leptin signaling in the central nervous system and the periphery. 2004

Christian Bjørbaek, and Barbara B Kahn
Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.

The discovery of leptin in 1994 has led to astonishing advances in understanding the regulation of energy balance in rodents and humans. The demonstration of leptin receptors in hypothalamic regions known to play critical roles in regulating energy intake and body weight has produced considerable excitement in the field. Most attention has focused on the central actions of leptin. The receptor is present in several populations of neurons that express specific appetite-regulating neuropeptides for which both expression and release are regulated by leptin. Recent advances show that central leptin action is not limited to influencing energy balance. Leptin regulates a broad variety of processes and behaviors, such as blood pressure, neuroendocrine axes, bone mass, and immune function. The cloning of leptin receptors also led to parallel studies examining their signaling capacities in mammalian cell lines. The long-form receptor regulates multiple intracellular signaling cascades, including the classic janus activating kinase-signal transducer and activator of transcription (JAK-STAT) pathway, consistent with belonging to the cytokine-receptor superfamily and the phosphoinositol-3 kinase and adenosine monophosphate kinase pathways. Progress has been made in understanding the role of individual signaling pathways in vivo and the mechanisms by which specific neuropeptides are regulated. Regulation of the pro-opiomelanocortin (pomc) and the thyrotropin-releasing hormone (trh) genes by leptin is particularly well understood. Novel players in negative regulation of central leptin receptor signaling have been identified and open the possibility that these may be important in the development of leptin resistance and obesity. While initial focus was on the central effects of leptin, important actions have been discovered in peripheral tissues. These include roles of leptin to directly regulate immune cells, pancreatic beta cells, adipocytes, and muscle cells. Recent elucidation of a new signaling pathway in skeletal muscle affecting fatty acid metabolism has implications for regulation of insulin sensitivity and glucose metabolism. Recent progress in understanding central and peripheral leptin receptor signaling provides potential new targets for anti-obesity and anti-diabetes drug development.

UI MeSH Term Description Entries
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases

Related Publications

Christian Bjørbaek, and Barbara B Kahn
August 2006, Obesity (Silver Spring, Md.),
Christian Bjørbaek, and Barbara B Kahn
March 2009, Cell biochemistry and function,
Christian Bjørbaek, and Barbara B Kahn
December 2001, BioEssays : news and reviews in molecular, cellular and developmental biology,
Christian Bjørbaek, and Barbara B Kahn
January 1998, Trends in endocrinology and metabolism: TEM,
Christian Bjørbaek, and Barbara B Kahn
October 2002, Nutrition reviews,
Christian Bjørbaek, and Barbara B Kahn
January 2021, International journal of molecular sciences,
Christian Bjørbaek, and Barbara B Kahn
December 2003, Molecular neurobiology,
Copied contents to your clipboard!