Interactions of estradiol with gonadotropin-releasing hormone and thyrotropin-releasing hormone in the control of growth hormone secretion in the goldfish. 1992

V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
Department of Zoology, University of Alberta, Edmonton, Canada.

The effects of testosterone (T) and estradiol (E2) on serum growth hormone (GH) concentrations were investigated throughout the seasonal reproductive cycle of the female goldfish. Gonad-intact female goldfish were implanted intraperitoneally for 5 days with silastic pellets containing no steroid (blank), T(100 micrograms/g) or E2 (25-100 micrograms/g). In blank-implanted females, seasonal variations in serum GH were evident; maximal serum GH levels were found in spring while minimal GH levels were found in summer and early autumn. Implantation of E2-containing silastic capsules stimulated increases (2-4 times control) in serum GH levels throughout the reproductive cycle. Implantation of T did not affect serum GH at any time of the year. One possible mechanism by which E2 could exert its effects may be through alteration of pituitary sensitivity to GH-releasing factors. The decapeptide salmon gonadotropin-releasing hormone (sGnRH) is found in the brain and pituitary of goldfish and stimulates gonadotropin (GTH) and GH secretion. In contrast, thyrotropin-releasing hormone (TRH) stimulates GH, but not GTH, release from pars distalis fragments obtained from sexually regressed (ED50 = 5.7 +/- 3.8 nM; August) or sexually mature (ED50 = 0.53 +/- 0.28 nM; March) fish; in vivo E2 treatment resulted in a 3-fold increase in the in vitro GH response to TRH. Furthermore, E2 treatment increased sGnRH-stimulated GH release by approximately 4-fold. These results demonstrate that E2 but not T stimulates GH secretion throughout the reproductive cycle of female goldfish. Furthermore, sGnRH and TRH stimulate GH release in a teleost, and these stimulatory responses are enhanced by physiological levels of E2.

UI MeSH Term Description Entries
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D004343 Drug Implants Small containers or pellets of a solid drug implanted in the body to achieve sustained release of the drug. Drug Implant,Drug Pellet,Pellets, Drug,Drug Pellets,Implant, Drug,Implants, Drug,Pellet, Drug
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012636 Secretory Rate The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa. Rate, Secretory,Rates, Secretory,Secretory Rates

Related Publications

V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
September 2003, Journal of animal science,
V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
January 1993, General and comparative endocrinology,
V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
June 1991, Biology of reproduction,
V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
August 1990, The Journal of laboratory and clinical medicine,
V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
July 1986, The Journal of clinical endocrinology and metabolism,
V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
January 1988, Acta paediatrica Japonica : Overseas edition,
V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
December 1993, General and comparative endocrinology,
V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
February 1982, American journal of obstetrics and gynecology,
V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
December 1994, General and comparative endocrinology,
V L Trudeau, and G M Somoza, and C S Nahorniak, and R E Peter
March 1987, The Journal of laboratory and clinical medicine,
Copied contents to your clipboard!