Involvement of endogeneous glutamate in the stimulatory effect of norepinephrine and serotonin on the hypothalamo-pituitary-adrenocortical axis. 2004

Shaul Feldman, and Joseph Weidenfeld
Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University-Hadassah Medical School, Jerusalem, Israel. dresner@post.tau.ac.il

The effects of ionotropic glutamate receptor antagonists on the pituitary adrenal responses following injections of norepinephrine (NE) and serotonin (5-HT) receptor agonists into the hypothalamic paraventricular nucleus (PVN) or electrical stimulation of central NE and 5-HT pathways were studied in anesthetized male rats. PVN injections of an alpha(1)-adrenergic receptor agonist or a serotonergic 5-HT(1A) receptor agonist markedly increased both adrenocorticotropin (ACTH) and corticosterone (CS) serum levels. These responses were significantly inhibited by separate pre-injection of the selective non-NMDA and NMDA glutamate receptor subtype antagonists into the PVN in a dose-dependent manner. Electrical stimulation of either the ventral noradrenergic bundle or the dorsal raphe nucleus markedly increased serum ACTH and CS. These responses were also significantly attenuated by pre-injection of the above glutamate ionotropic receptor antagonists in a dose-dependent manner. These results suggest that glutamatergic interneurons in the PVN, acting via non-NMDA and NMDA receptors, may act as an excitatory mechanism in the NE and 5-HT control of hypothalamic ACTH secretagogues.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D011810 Quinoxalines Quinoxaline
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug

Related Publications

Shaul Feldman, and Joseph Weidenfeld
August 1989, The Journal of endocrinology,
Shaul Feldman, and Joseph Weidenfeld
December 1999, Bailliere's best practice & research. Clinical endocrinology & metabolism,
Shaul Feldman, and Joseph Weidenfeld
May 1988, Pharmacological research communications,
Shaul Feldman, and Joseph Weidenfeld
February 2003, Current opinion in pharmacology,
Shaul Feldman, and Joseph Weidenfeld
January 1986, Neuroendocrinology,
Shaul Feldman, and Joseph Weidenfeld
May 2009, Immunology and allergy clinics of North America,
Shaul Feldman, and Joseph Weidenfeld
May 2006, Psychoneuroendocrinology,
Shaul Feldman, and Joseph Weidenfeld
January 1978, Acta physiologica Academiae Scientiarum Hungaricae,
Shaul Feldman, and Joseph Weidenfeld
December 1993, The Journal of steroid biochemistry and molecular biology,
Copied contents to your clipboard!