Alpha-helix E of Spo0A is required for sigmaA- but not for sigmaH-dependent promoter activation in Bacillus subtilis. 2004

Amrita Kumar, and James A Brannigan, and Charles P Moran
Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

At the onset of endospore formation in Bacillus subtilis, the DNA binding protein Spo0A activates transcription from two types of promoters. The first type includes the spoIIG and spoIIE promoters, which are used by sigma(A)-RNA polymerase, whereas the second type includes the spoIIA promoter, which is used by RNA polymerase containing the secondary sigma factor sigma(H). Previous genetic analyses have identified specific amino acids in alpha-helix E of Spo0A that are important for activation of Spo0A-dependent, sigma(A)-dependent promoters. However, these amino acids are not required for activation of the sigma(H)-dependent spoIIA promoter. We now report the effects of additional single-amino-acid substitutions and the effects of deletions in alpha-helix E. The effects of alanine substitutions revealed one new position (239) in Spo0A that appears to be specifically required for activation of the sigma(A)-dependent promoters. Based on the effects of a deletion mutation, we suggest that alpha-helix E in Spo0A is not directly involved in interaction with sigma(H)-RNA polymerase.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012808 Sigma Factor A protein which is a subunit of RNA polymerase. It effects initiation of specific RNA chains from DNA. Sigma Element,Sigma Initiation Factor,Sigma Subunit,Minor Sigma Factor,RNA Polymerase Sigma Factor H,Factor, Sigma,Factor, Sigma Initiation,Initiation Factor, Sigma,Sigma Factor, Minor,Subunit, Sigma
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

Amrita Kumar, and James A Brannigan, and Charles P Moran
September 1998, Journal of bacteriology,
Amrita Kumar, and James A Brannigan, and Charles P Moran
July 1998, Journal of biochemistry,
Amrita Kumar, and James A Brannigan, and Charles P Moran
February 2006, Journal of bacteriology,
Amrita Kumar, and James A Brannigan, and Charles P Moran
June 1994, Journal of bacteriology,
Amrita Kumar, and James A Brannigan, and Charles P Moran
March 1995, Proceedings of the National Academy of Sciences of the United States of America,
Amrita Kumar, and James A Brannigan, and Charles P Moran
April 2004, The Journal of biological chemistry,
Amrita Kumar, and James A Brannigan, and Charles P Moran
July 1998, Journal of bacteriology,
Amrita Kumar, and James A Brannigan, and Charles P Moran
February 1996, FEBS letters,
Amrita Kumar, and James A Brannigan, and Charles P Moran
December 2001, Molecular microbiology,
Amrita Kumar, and James A Brannigan, and Charles P Moran
March 1992, Journal of bacteriology,
Copied contents to your clipboard!