Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. 2004

C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
Department of Molecular Biology and Biotechnology, University of Sheffield, Krebs Institute for Biomolecular Research, Sheffield, UK.

The effects of the PufX polypeptide on membrane architecture were investigated by comparing the composition and structures of photosynthetic membranes from PufX+ and PufX- strains of Rhodobacter sphaeroides. We show that this single polypeptide profoundly affects membrane morphology, leading to highly elongated cells containing extended tubular membranes. Purified tubular membranes contain helical arrays composed solely of dimeric RC-LH1-PufX (RC, reaction centre; LH, light harvesting) complexes with apparently open LH1 rings. PufX- cells contain crystalline membranes with a pseudo-hexagonal packing of monomeric core complexes. Analysis of purified complexes by electron microscopy and atomic force microscopy shows that LH1 and PufX form a continuous ring of protein around each RC. A model of the tubular membrane is presented with PufX located adjacent to the stained region created by a vacant LH1beta. This arrangement, coupled with a flexible ring, would give the RC QB site transient access to the interstices in the lattice, which might be of functional importance. We discuss the implications of our data for the export of quinol from the RC, for eventual reduction of the cytochrome bc1 complex.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012242 Rhodobacter sphaeroides Spherical phototrophic bacteria found in mud and stagnant water exposed to light. Rhodopseudomonas sphaeroides,Rhodobacter spheroides,Rhodopseudomonas spheroides
D014450 Electron Transport Complex III A multisubunit enzyme complex that contains CYTOCHROME B GROUP; CYTOCHROME C1; and iron-sulfur centers. It catalyzes the oxidation of ubiquinol to UBIQUINONE, and transfers the electrons to CYTOCHROME C. In MITOCHONDRIA the redox reaction is coupled to the transport of PROTONS across the inner mitochondrial membrane. Complex III,Cytochrome bc1 Complex,Ubiquinol-Cytochrome-c Reductase,Coenzyme Q-Cytochrome-c Reductase,Coenzyme QH2-Cytochrome-c Reductase,Core I Protein, UCCreductase,Core I Protein, Ubiquinol-Cytochrome c Reductase,Core II Protein, UCCreductase,Core II Protein, Ubiquinol-Cytochrome c Reductase,Cytochrome b-c2 Oxidoreductase,Cytochrome bc1,Dihydroubiquinone-Cytochrome-c Reductase,QH(2)-Cytochrome-c Reductase,QH(2)-Ferricytochrome-c Oxidoreductase,Ubihydroquinone-Cytochrome-c Reductase,Ubiquinol-Cytochrome c Reductase,Ubiquinone-Cytochrome b-c2 Oxidoreductase,Coenzyme Q Cytochrome c Reductase,Coenzyme QH2 Cytochrome c Reductase,Core I Protein, Ubiquinol Cytochrome c Reductase,Core II Protein, Ubiquinol Cytochrome c Reductase,Cytochrome b c2 Oxidoreductase,Dihydroubiquinone Cytochrome c Reductase,Reductase, Ubiquinol-Cytochrome c,Ubihydroquinone Cytochrome c Reductase,Ubiquinol Cytochrome c Reductase,Ubiquinone Cytochrome b c2 Oxidoreductase
D045342 Light-Harvesting Protein Complexes Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX. Antenna Complexes, Light-Harvesting,Light-Harvesting Antenna Complexes,Light-Harvesting Chlorophyll Protein,Light-Harvesting Chlorophyll Protein Complexes,Antenna Complexes, Light Harvesting,Chlorophyll Protein, Light-Harvesting,Complexes, Light-Harvesting Antenna,Complexes, Light-Harvesting Protein,Light Harvesting Antenna Complexes,Light Harvesting Chlorophyll Protein,Light Harvesting Chlorophyll Protein Complexes,Light Harvesting Protein Complexes,Protein Complexes, Light-Harvesting

Related Publications

C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
January 2004, The Journal of biological chemistry,
C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
March 2005, The Journal of biological chemistry,
C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
December 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
February 2014, Photosynthesis research,
C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
November 1995, Biochemistry,
C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
December 2006, FEBS letters,
C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
March 1988, Microbiological reviews,
C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
January 1997, Journal of bacteriology,
C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
November 1999, Trends in microbiology,
C Alistair Siebert, and Pu Qian, and Dimitrios Fotiadis, and Andreas Engel, and C Neil Hunter, and Per A Bullough
August 1994, FEBS letters,
Copied contents to your clipboard!