CtaG is required for formation of active cytochrome c oxidase in Bacillus subtilis. 2004

Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden.

The Gram-positive bacterium Bacillus subtilis contains two respiratory oxidases of the haem-copper superfamily: cytochrome aa(3), which is a quinol oxidase, and cytochrome caa(3), which is a cytochrome c oxidase. Cytochrome c oxidase uniquely contains a di-copper centre, Cu(A). B. subtilis CtaG is a membrane protein encoded by the same gene cluster as that which encodes the subunits of cytochrome c oxidase. The role of B. subtilis CtaG and orthologous proteins present in many other Gram-positive bacteria has remained unexplored. The sequence of CtaG is unrelated to that of CtaG/Cox11p of proteobacteria and eukaryotic cells. This study shows that B. subtilis CtaG is essential for the formation of active cytochrome caa(3) but is not required for assembly of the core subunits I and II with haem in the membrane and it has no role in the synthesis of active cytochrome aa(3). B. subtilis YpmQ, a homologue to Sco1p of eukaryotic cells, is also a membrane-bound cytochrome c oxidase-specific assembly factor. Properties of CtaG- and YpmQ-deficient mutants were compared. Cells lacking YpmQ showed a low cytochrome c oxidase activity and this defect was suppressed by the supplementation of the growth medium with copper ions. It has previously been proposed that YpmQ/Sco1p is involved in synthesis of the Cu(A) centre. The results of this study are consistent with this proposal but the exact role of YpmQ in assembly of cytochrome c oxidase remains to be elucidated.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
May 2000, Molecular microbiology,
Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
January 1999, Journal of bacteriology,
Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
August 1987, European journal of biochemistry,
Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
September 2000, The Journal of biological chemistry,
Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
December 2000, Journal of bacteriology,
Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
March 1983, European journal of biochemistry,
Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
January 1986, Methods in enzymology,
Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
January 1991, European journal of biochemistry,
Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
March 1997, Journal of bacteriology,
Jenny Bengtsson, and Claes von Wachenfeldt, and Lena Winstedt, and Per Nygaard, and Lars Hederstedt
January 2000, The Journal of biological chemistry,
Copied contents to your clipboard!