The early ontogeny of neuronal nitric oxide synthase systems in the zebrafish. 2004

B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
Department of Pathology, Lund University, Sölvegatan 25, S-221 85 Lund, Sweden. bo.holmqvist@pat.lu.se

To examine a putative role for neuronal nitric oxide synthase (nNOS) in early vertebrate development we investigated nNOS mRNA expression and cGMP production during development of the zebrafish Danio rerio. The nNOS mRNA expression in the central nervous system (CNS) and periphery showed a distinct spatio-temporal pattern in developing zebrafish embryo and young larvae. nNOS mRNA expression was first detected at 19 h postfertilisation (h.p.f.), in a bilateral subpopulation of the embryonic ventrorostral cell cluster in the forebrain. The number of nNOS mRNA-expressing cells in the brain slowly increased, also appearing in the ventrocaudal cell cluster from about 26 h.p.f., and in the dorsorostral and hindbrain cell cluster and in the medulla at 30 h.p.f. A major increase in nNOS mRNA expression started at about 40 h.p.f., and by 55 h.p.f. the expression constituted cell populations in differentiated central nuclei and in association with the proliferation zones of the brain, and in the medulla and retina. In parts of the skin, nNOS mRNA expression started at 20 h.p.f. and ended at 55 h.p.f. Between 40 and 55 h.p.f., nNOS mRNA expression started in peripheral organs, forming distinct populations after hatching within or in the vicinity of the presumptive swim bladder, enteric ganglia, and along the alimentary tract and nephritic ducts. Expression of nNOS mRNA correlated with the neuronal differentiation pattern and with the timing and degree of cGMP production. These studies indicate spatio-temporal actions by NO during embryogenesis in the formation of the central and peripheral nervous system, with possible involvement in processes such as neurogenesis, organogenesis and early physiology.

UI MeSH Term Description Entries
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019001 Nitric Oxide Synthase An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE. NO Synthase,Nitric-Oxide Synthase,Nitric-Oxide Synthetase,Nitric Oxide Synthetase,Oxide Synthase, Nitric,Synthase, Nitric Oxide

Related Publications

B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
August 2003, Gene expression patterns : GEP,
B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
June 2000, American journal of physiology. Regulatory, integrative and comparative physiology,
B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
January 1996, Methods in enzymology,
B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
July 2009, Journal of medicinal chemistry,
B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
March 2011, Genetic testing and molecular biomarkers,
B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
January 2005, Current topics in medicinal chemistry,
B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
November 2002, Cardiovascular research,
B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
February 1996, Neuroscience letters,
B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
October 2000, Neuroscience letters,
B Holmqvist, and B Ellingsen, and J Forsell, and I Zhdanova, and P Alm
August 2020, Reviews in the neurosciences,
Copied contents to your clipboard!