P2X2 and P2X3 purinoceptors in the rat enteric nervous system. 2004

Zhenghua Xiang, and Geoffrey Burnstock
Autonomic Neuroscience Institute, Royal Free and University College London Medical School, Rowland Hill Street, London, NW3 2PF, UK.

Adenosine 5'-triphosphate receptors are known to be involved in fast excitatory postsynaptic currents in myenteric neurons of the digestive tract. In the present study, the distribution of P2X2 and P2X3 receptor mRNA was examined by in situ hybridisation while P2X2 and P2X3 receptor protein was localised by immunohistochemical methods. In addition, P2X2 and P2X3 receptors were colocalised with calbindin and calretinin in the myenteric and submucosal plexus. P2X2- and P2X3- immunoreactive neurons were found in the myenteric and submucosal plexuses throughout the entire length of the rat digestive tract from the stomach to the colon. Approximately 60%, 70% and 50% of the ganglion cells in the myenteric plexus of the gastric corpus, ileum and distal colon, and 56% and 45% in the submucosal plexus of the ileum and distal colon, respectively, showed positive immunoreactivity to the P2X2 receptor. Approximately 10%, 2% and 15% of the ganglion cells in the myenteric plexus of the gastric corpus, ileum and distal colon, and 62% and 40% in the submucosal plexus of the ileum and distal colon, respectively, showed positive immunoreactivity to the P2X3 receptor. Double-labelling studies showed that about 10-25% of the neurons with P2X2 immunoreactivity in myenteric plexus and 30-50% in the submucosal plexus were found to express calbindin or calretinin. About 80% of the neurons with P2X3 receptor immunoreactivity in the myenteric plexus and about 40% in the submucosal plexus expressed calretinin. Approximately 30-75% of the neurons with P2X3 receptor immunoreactivity in the submucosal plexus expressed calbindin, while none of them were found to express calbindin in the myenteric plexus.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013368 Submucous Plexus One of two ganglionated neural networks which together form the enteric nervous system. The submucous (Meissner's) plexus is in the connective tissue of the submucosa. Its neurons innervate the epithelium, blood vessels, endocrine cells, other submucosal ganglia, and myenteric ganglia, and play an important role in regulating ion and water transport. (From FASEB J 1989;3:127-38) Meissner's Plexus,Submucosal Plexus,Meissner Plexus,Meissners Plexus,Plexus, Meissner's,Plexus, Submucosal,Plexus, Submucous
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017615 Enteric Nervous System Two ganglionated neural plexuses in the gut wall which form one of the three major divisions of the autonomic nervous system. The enteric nervous system innervates the gastrointestinal tract, the pancreas, and the gallbladder. It contains sensory neurons, interneurons, and motor neurons. Thus the circuitry can autonomously sense the tension and the chemical environment in the gut and regulate blood vessel tone, motility, secretions, and fluid transport. The system is itself governed by the central nervous system and receives both parasympathetic and sympathetic innervation. (From Kandel, Schwartz, and Jessel, Principles of Neural Science, 3d ed, p766) Enteric Nervous Systems,Nervous System, Enteric,Nervous Systems, Enteric,System, Enteric Nervous,Systems, Enteric Nervous
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D058476 Receptors, Purinergic P2X2 A purinergic P2X neurotransmitter receptor involved in sensory signaling of TASTE PERCEPTION, chemoreception, visceral distension and NEUROPATHIC PAIN. The receptor comprises three P2X2 subunits. The P2X2 subunits also have been found associated with P2X3 RECEPTOR subunits in a heterotrimeric receptor variant. P2X2 Purinoceptor,P2X2 Purinoceptors,P2X2 Receptor,Purinergic Receptor P2X, Ligand-Gated Ion Channel, 2,P2X2 Receptors, Purinergic,Purinergic P2X2 Receptors,Purinoceptor, P2X2,Purinoceptors, P2X2,Receptor, P2X2
D058477 Receptors, Purinergic P2X3 A purinergic P2X neurotransmitter receptor involved in sensory signaling of TASTE PERCEPTION, chemoreception, visceral distension, and NEUROPATHIC PAIN. The receptor comprises three P2X3 subunits. The P2X3 subunits are also associated with P2X2 RECEPTOR subunits in a heterotrimeric receptor variant. P2X3 Purinoceptor,P2X3 Receptor,Purinergic Receptor P2X, Ligand-Gated Ion Channel, 3,P2X3 Receptors, Purinergic,Purinergic P2X3 Receptors,Purinoceptor, P2X3,Receptor, P2X3
D018048 Receptors, Purinergic P2 A class of cell surface receptors for PURINES that prefer ATP or ADP over ADENOSINE. P2 purinergic receptors are widespread in the periphery and in the central and peripheral nervous system. ADP Receptors,ATP Receptors,P2 Purinoceptors,Purinergic P2 Receptors,Receptors, ADP,Receptors, ATP,ADP Receptor,ATP Receptor,P2 Purinoceptor,Receptor, Purinergic P2,P2 Receptor, Purinergic,P2 Receptors, Purinergic,Purinergic P2 Receptor,Purinoceptor, P2,Purinoceptors, P2,Receptor, ADP,Receptor, ATP

Related Publications

Zhenghua Xiang, and Geoffrey Burnstock
April 2007, Neuroscience,
Zhenghua Xiang, and Geoffrey Burnstock
August 2011, Digestive diseases and sciences,
Zhenghua Xiang, and Geoffrey Burnstock
April 1995, Pharmacology & toxicology,
Zhenghua Xiang, and Geoffrey Burnstock
January 2007, Neuroscience,
Zhenghua Xiang, and Geoffrey Burnstock
October 2002, Autonomic neuroscience : basic & clinical,
Zhenghua Xiang, and Geoffrey Burnstock
January 2014, Pharmaceutical patent analyst,
Zhenghua Xiang, and Geoffrey Burnstock
January 1996, Drug development research,
Zhenghua Xiang, and Geoffrey Burnstock
December 2022, Animals : an open access journal from MDPI,
Zhenghua Xiang, and Geoffrey Burnstock
May 1999, The Journal of general physiology,
Zhenghua Xiang, and Geoffrey Burnstock
December 2003, Anatomy and embryology,
Copied contents to your clipboard!