Cytochrome P-455 nm complex formation in the metabolism of phenylalkylamines. XII. Enantioselectivity and temperature dependence in microsomes and reconstituted cytochrome P-450 systems from rat liver. 1992

K H Jönsson, and B Lindeke
Department of Organic Pharmaceutical Chemistry, Uppsala University, Sweden.

Formation of metabolic intermediate (MI) complexes was studied with the enantiomers of amphetamine, 1-phenyl-2-pentanamine, N-hydroxyamphetamine, and 2-nitroso-1-phenylpropane (the C-nitroso analogue of amphetamine). Three different enzyme systems were used; liver microsomes from phenobarbital pretreated rats and two reconstituted systems containing the P450 2B1 and P450 2C11 forms of cytochrome P-450. Enantioselective complex formation in microsomes was shown for the amines and the nitroso compound, but not for the hydroxylamine. The highly purified P450 2B1 system formed the MI complex with all substrates tested, and the enantioselectivity observed with the microsomal system was reproduced. In the P450 2C11 system the nitroso compounds were completely inactive, whereas the enantiomers of N-hydroxyamphetamine still produced the complex at a high rate. Changes in temperature were shown to affect (R)-2-nitroso-1-phenylpropane more than its enantiomer. Both enantiomers showed biphasic Arrhenius plots for MI complex formation in microsomes (breaks around 22 degrees C), but the activation energies of the (R)-isomer were about five times higher than those of the (S)-isomer. A theory is presented which suggests different modes of interaction with the active site of P-450 to account for the different behaviour of the various substrates.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010627 Phenethylamines A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed) Phenylethylamines
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D000662 Amphetamines Analogs or derivatives of AMPHETAMINE. Many are sympathomimetics and central nervous system stimulators causing excitation, vasopressin, bronchodilation, and to varying degrees, anorexia, analepsis, nasal decongestion, and some smooth muscle relaxation.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer

Related Publications

K H Jönsson, and B Lindeke
January 1978, Methods in enzymology,
K H Jönsson, and B Lindeke
February 1997, Nihon rinsho. Japanese journal of clinical medicine,
K H Jönsson, and B Lindeke
June 1981, Biochemical and biophysical research communications,
Copied contents to your clipboard!