Urea-dependent unfolding of murine adenosine deaminase: sequential destabilization as measured by 19F NMR. 2004

Qin Shu, and Carl Frieden
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Murine adenosine deaminase (mADA) is a 40 kDa (beta/alpha)(8)-barrel protein consisting of eight central beta-strands and eight peripheral alpha-helices containing four tryptophan residues. In this study, we investigated the urea-dependent behavior of the protein labeled with 6-fluorotryptophan (6-(19)F-Trp). The (19)F NMR spectrum of 6-(19)F-Trp-labeled mADA reveals four distinct resonances in the native state and three partly overlapped resonances in the unfolded state. The resonances were assigned unambiguously by site-directed mutagenesis. Equilibrium unfolding of 6-(19)F-Trp-labeled mADA was monitored using (19)F NMR based on these assignments. The changes in intensity of folded and unfolded resonances as a function of urea concentration show transition midpoints consistent with data observed by far-UV CD and fluorescence spectroscopy, indicating that conformational changes in mADA during urea unfolding can be followed by (19)F NMR. Chemical shifts of the (19)F resonances exhibited different changes between 1.0 and 6.0 M urea, indicating that local structures around 6-(19)F-Trp residues change differently. The urea-induced changes in local structure around four 6-(19)F-Trp residues of mADA were analyzed on the basis of the tertiary structure and chemical shifts of folded resonances. The results reveal that different local regions in mADA have different urea-dependent behavior, and that local regions of mADA change sequentially from native to intermediate topologies on the unfolding pathway.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D005461 Fluorine A nonmetallic, diatomic gas that is a trace element and member of the halogen family. It is used in dentistry as fluoride (FLUORIDES) to prevent dental caries. Fluorine-19,Fluorine 19
D000243 Adenosine Deaminase An enzyme that catalyzes the hydrolysis of ADENOSINE to INOSINE with the elimination of AMMONIA. Adenosine Aminohydrolase,Aminohydrolase, Adenosine,Deaminase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan
D014508 Urea A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Basodexan,Carbamide,Carmol
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

Qin Shu, and Carl Frieden
January 1987, Annals of the New York Academy of Sciences,
Qin Shu, and Carl Frieden
December 2018, Journal of cellular and molecular medicine,
Qin Shu, and Carl Frieden
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
Qin Shu, and Carl Frieden
December 2018, Proceedings of the National Academy of Sciences of the United States of America,
Qin Shu, and Carl Frieden
August 1984, The Journal of pharmacy and pharmacology,
Qin Shu, and Carl Frieden
May 1969, Biochimica et biophysica acta,
Qin Shu, and Carl Frieden
August 2008, Journal of biochemistry,
Qin Shu, and Carl Frieden
January 1967, Biochimica et biophysica acta,
Qin Shu, and Carl Frieden
August 1991, NMR in biomedicine,
Copied contents to your clipboard!