Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. 2004

Galina Radeva, and Frances J Sharom
Department of Chemistry and Biochemistry, University of Guelph, Guelph, ON, Canada N1G 2W1.

Lipid rafts are plasma-membrane microdomains that are enriched in certain lipids (sphingolipids, glycosphingolipids and cholesterol), as well as in lipid-modified proteins. Rafts appear to exist in the liquid-ordered phase, which contributes to their partitioning from the surrounding liquid-disordered glycerophospholipid environment. DRM (detergent-resistant membrane) fractions isolated from cells are believed to represent coalesced lipid rafts. We have employed extraction using two different non-ionic detergents, Brij-96 and Triton X-100, to isolate detergent-resistant lipid rafts from rat basophilic leukaemia cell line RBL-2H3, and compared their properties with each other and with plasma-membrane vesicles. DRM fractions were isolated as sealed unilamellar vesicles of similar size (135-170 nm diameter), using either sucrose-density-gradient sedimentation or gel-filtration chromatography. Lipid rafts isolated using Brij-96 and Triton X-100 differed in density, protein content and the distribution between high- and low-density fractions of the known raft constituents, Thy-1, and the non-receptor protein tyrosine kinases, Yes and Lyn. Lyn was found in the raft microdomains in predominantly phosphorylated form. The level of enrichment of the protein constituents of the isolated lipid rafts seemed to depend on the ratio of cell lipid/protein to detergent. As indicated by reactivity with anti-Thy-1 antibodies, lipid rafts prepared using Brij-96 appeared to consist of vesicles with primarily right-side-out orientation. Both Brij-96 and Triton X-100 appear to isolate detergent-insoluble raft microdomains from the rat basophilic leukaemia cell line RBL-2H3, but the observed differences suggest that either the detergents themselves play a role in determining the physicochemical characteristics of the resulting DRM fractions, or different subsets of rafts are isolated by the two detergents.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010938 Plant Oils Oils derived from plants or plant products. Oils, Plant,Oils, Vegetable,Plant Oil,Vegetable Oil,Vegetable Oils,Oil, Plant,Oil, Vegetable
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography

Related Publications

Galina Radeva, and Frances J Sharom
February 1997, Journal of immunological methods,
Galina Radeva, and Frances J Sharom
August 2019, International journal of molecular sciences,
Galina Radeva, and Frances J Sharom
February 1998, Pulmonary pharmacology & therapeutics,
Galina Radeva, and Frances J Sharom
November 1990, Neuroscience letters,
Galina Radeva, and Frances J Sharom
January 2001, Immunology letters,
Galina Radeva, and Frances J Sharom
January 2010, Microbiology and immunology,
Copied contents to your clipboard!