Chicktacking pineal clock. 2003

Toshiyuki Okano, and Yoshitaka Fukada
Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033.

Many tissues in non-mammalian vertebrates contain both photoreceptors and circadian clock systems. Among these photosensitive clock structures, the chick pineal gland has been characterized in detail from cellular and molecular aspects of the clock oscillation and entrainment. Analyses of the pineal photic-input pathway revealed a phase-shifting mechanism mediated by activation of G11, one of the Gq-type G-proteins. A major photoreceptive molecule, pinopsin, likely triggers this pathway by transmitting the light signal to the circadian oscillator. In the chick pineal oscillator, the transcription/translation-based autoregulatory feedback loop is composed of positive and negative elements (clock gene products) that are homologous to those identified in mammals. In the molecular cycling, a CACGTG E-box located in the promoter region of the negative element genes plays a central role in the transcriptional regulation. The phase of the molecular cycling is modulated by many regulatory components, among which E4BP4 and extracellular signal-regulated kinase (ERK) are closely associated with the photic entrainment. A light-responsive element was found in the promoter region of the Pinopsin gene, and the element included a CACGTG E-box, suggesting a novel role of the E-box as a point of convergence of light and circadian signals. These observations together point to general and unique features of the chick pineal circadian system among animal clocks.

UI MeSH Term Description Entries
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001683 Biological Clocks The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena. Biological Oscillators,Oscillators, Endogenous,Pacemakers, Biological,Biologic Clock,Biologic Oscillator,Biological Pacemakers,Clock, Biologic,Clocks, Biological,Oscillator, Biologic,Oscillators, Biological,Pacemaker, Biologic,Pacemakers, Biologic,Biologic Clocks,Biologic Oscillators,Biologic Pacemaker,Biologic Pacemakers,Biological Clock,Biological Oscillator,Biological Pacemaker,Clock, Biological,Clocks, Biologic,Endogenous Oscillator,Endogenous Oscillators,Oscillator, Biological,Oscillator, Endogenous,Oscillators, Biologic,Pacemaker, Biological
D015534 Trans-Activators Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins. Nuclear Trans-Acting Factor,Trans-Acting Factors,Trans-Acting Factor,Trans-Activator,Transactivator,Transactivators,Factor, Nuclear Trans-Acting,Factor, Trans-Acting,Factors, Trans-Acting,Nuclear Trans Acting Factor,Trans Acting Factor,Trans Acting Factors,Trans Activator,Trans Activators,Trans-Acting Factor, Nuclear
D056926 CLOCK Proteins Basic helix-loop-helix (bHLH) domain-containing proteins that contain intrinsic HISTONE ACETYLTRANSFERASE activity and play important roles in CIRCADIAN RHYTHM regulation. Clock proteins combine with Arntl proteins to form heterodimeric transcription factors that are specific for E-BOX ELEMENTS and stimulate the transcription of several E-box genes that are involved in cyclical regulation. This transcriptional activation also sets into motion a time-dependent feedback loop which in turn down-regulates the expression of clock proteins. CLOCK Protein,Circadian Locomotor Output Cycles Kaput Proteins

Related Publications

Toshiyuki Okano, and Yoshitaka Fukada
January 1982, Progress in clinical and biological research,
Toshiyuki Okano, and Yoshitaka Fukada
January 1973, Acta physiologica latino americana,
Toshiyuki Okano, and Yoshitaka Fukada
January 1966, Problemes actuels d'endocrinologie et de nutrition,
Toshiyuki Okano, and Yoshitaka Fukada
May 1994, Annals of the New York Academy of Sciences,
Toshiyuki Okano, and Yoshitaka Fukada
October 1989, Experientia,
Toshiyuki Okano, and Yoshitaka Fukada
June 1968, Science (New York, N.Y.),
Toshiyuki Okano, and Yoshitaka Fukada
December 1978, Science (New York, N.Y.),
Toshiyuki Okano, and Yoshitaka Fukada
April 2009, Annals of the New York Academy of Sciences,
Toshiyuki Okano, and Yoshitaka Fukada
October 1983, Proceedings of the National Academy of Sciences of the United States of America,
Toshiyuki Okano, and Yoshitaka Fukada
November 2016, PLoS genetics,
Copied contents to your clipboard!