Ryanodine induces persistent inactivation of the Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. 1992

I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
Department of Veterinary Pharmacology and Toxicology, University of California, Davis 95616.

Junctional sarcoplasmic reticulum (SR) membranes isolated from rabbit skeletal muscle were pretreated with 0.1-500 microM ryanodine under equilibrium conditions optimal for receptor binding, followed by the removal of bound alkaloid by several washes in Ca(2+)- and ryanodine-free buffer. Pretreatment with > 100 nM ryanodine results in a concentration-dependent decrease in the Bmax of the high affinity sites and a complete loss of measurable low affinity binding sites that persist for > 48 hr. Quantitative analysis of residual ryanodine using three different methods demonstrates that the inhibition is not the result of residual ryanodine bound to its receptor. Ca2+ transport measurements made with antipyrylazo III show that actively loaded ryanodine-pretreated SR exhibits a persistent insensitivity to ryanodine- and daunomycin-induced Ca2+ release that is not seen with washed control vesicles. Lipid bilayer membranes fused with SR vesicles exhibit rapidly fluctuating single-channel events with a conductance of 468 pS in asymmetric CsCl solutions. Ryanodine (10 microM) produces a unidirectional transition to a slowly fluctuating half-conductance state that is not reversed by perfusion of the bilayer with Ca(2+)-free buffer and subsequent addition of dithiothreitol. However, dithiothreitol added in the ryanodine pretreatment medium offers marked protection against ryanodine-induced loss of binding sites and allows complete restoration of native gating behavior of single channels in bilayer lipid membrane. Using three different experimental approaches, the data demonstrate that the alkaloid at micromolar concentration persistently alters SR Ca2+ release channel function, perhaps by uncoupling four negatively cooperative binding sites. The oxidation of critical receptor thiols is implicated in the process.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D013438 Sulfhydryl Compounds Compounds containing the -SH radical. Mercaptan,Mercapto Compounds,Sulfhydryl Compound,Thiol,Thiols,Mercaptans,Compound, Sulfhydryl,Compounds, Mercapto,Compounds, Sulfhydryl
D019837 Ryanodine Receptor Calcium Release Channel A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES. Calcium-Ryanodine Receptor Complex,RyR1,Ryanodine Receptor 1,Ryanodine Receptor 2,Ryanodine Receptor 3,Ryanodine Receptors,Ca Release Channel-Ryanodine Receptor,Receptor, Ryanodine,RyR2,RyR3,Ryanodine Receptor,Ca Release Channel Ryanodine Receptor,Calcium Ryanodine Receptor Complex,Complex, Calcium-Ryanodine Receptor,Receptor 1, Ryanodine,Receptor 2, Ryanodine,Receptor 3, Ryanodine,Receptor Complex, Calcium-Ryanodine,Receptors, Ryanodine

Related Publications

I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
December 1995, The Journal of biological chemistry,
I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
January 1988, Methods in enzymology,
I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
September 1992, Molecular and cellular biochemistry,
I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
September 1985, The Journal of biological chemistry,
I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
April 1996, The Journal of biological chemistry,
I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
December 1987, The Journal of biological chemistry,
I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
October 1995, The Journal of biological chemistry,
I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
February 1992, Archives of biochemistry and biophysics,
I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
June 2007, Biochimica et biophysica acta,
I Zimányi, and E Buck, and J J Abramson, and M M Mack, and I N Pessah
August 1985, FEBS letters,
Copied contents to your clipboard!