Interactions of thermally denatured fibrinogen on polyethylene with plasma proteins and platelets. 1992

F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
Department of Pathology, McMaster University, Hamilton, Ontario, Canada.

During the investigation of fibrin deposition onto hydrophobic polymers in contact with human blood, a model was developed in which fibrinogen was denatured and irreversibly coated onto a polyethylene surface by heating to 70 degrees C for 10 min. The denatured fibrinogen-polyethylene surface is resistant to fluid wall shear rates of up to 550 s-1 and the fibrinogen does not desorb in the presence of plasma proteins. Compared to uncoated polyethylene, little albumin or fibrinogen adsorbs to heat-denatured fibrinogen. Thrombin binds to the denatured fibrinogen-coated polyethylene with low affinity and also acts on the surface-bound denatured fibrinogen and cleaves fibrinopeptide A (FPA) quantitatively. Washed, 51Cr-labeled platelets do not adhere to the thermally denatured fibrinogen at either low or high shear rates compared to surfaces coated with undenatured fibrinogen (p < 0.01). These observations support the role of the D domain of fibrinogen in platelet adhesion because this is the region that is denatured by heating. In contrast, the E domain of fibrinogen is not altered by heating to 70 degrees C and hence remains susceptible to thrombin and/or plasmin cleavage. The characteristics of this surface are such that it can be used to develop fibrin-coated surfaces for use in studies of thrombus formation on artificial surfaces.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D011095 Polyethylenes Synthetic thermoplastics that are tough, flexible, inert, and resistant to chemicals and electrical current. They are often used as biocompatible materials for prostheses and implants. Ethylene Polymers,Ethene Homopolymers,Homopolymers, Ethene,Polymers, Ethylene
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002860 Chromium Radioisotopes Unstable isotopes of chromium that decay or disintegrate emitting radiation. Cr atoms with atomic weights of 46-49, 51, 55, and 56 are radioactive chromium isotopes. Radioisotopes, Chromium
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D005341 Fibrinolysin A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins. Plasmin,Fibrogammin,Glu-Plasmin,Protease F,Thrombolysin,Glu Plasmin
D005344 Fibrinopeptide A Two small peptide chains removed from the N-terminal segment of the alpha chains of fibrinogen by the action of thrombin during the blood coagulation process. Each peptide chain contains 18 amino acid residues. In vivo, fibrinopeptide A is used as a marker to determine the rate of conversion of fibrinogen to fibrin by thrombin. Fibrinopeptides A
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot

Related Publications

F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
December 1998, Biomaterials,
F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
August 2003, Journal of biomedical materials research. Part A,
F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
August 2001, Biological chemistry,
F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
August 2008, Chemical communications (Cambridge, England),
F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
January 1978, Polskie Archiwum Medycyny Wewnetrznej,
F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
January 1994, Journal of biomaterials science. Polymer edition,
F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
September 1996, Acta chemica Scandinavica (Copenhagen, Denmark : 1989),
F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
October 2002, Blood,
F Rubens, and J Brash, and J Weitz, and R Kinlough-Rathbone
November 1988, Blood,
Copied contents to your clipboard!