Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. 1992

D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235.

Sodium-calcium exchange current was isolated in inside-out patches excised from guinea pig ventricular cells using the giant patch method. The outward exchange current decayed exponentially upon activation by cytoplasmic sodium (sodium-dependent inactivation). The kinetics and mechanism of the inactivation were studied. (a) The rate of inactivation and the peak current amplitude were both strongly temperature dependent (Q10 = 2.2). (b) An increase in cytoplasmic pH from 6.8 to 7.8 attenuated the current decay and shifted the apparent dissociation constant (Kd) of cytoplasmic calcium for secondary activation of the exchange current from 9.6 microM to < 0.3 microM. (c) The amplitude of exchange current decreased synchronously over the membrane potential range from -120 to 60 mV during the inactivation, indicating that voltage dependence of the exchanger did not change during the inactivation process. The voltage dependence of exchange current also did not change during secondary modulation by cytoplasmic calcium and activation by chymotrypsin. (d) In the presence of 150 mM extracellular sodium and 2 mM extracellular calcium, outward exchange current decayed similarly upon application of cytoplasmic sodium. Upon removal of cytoplasmic sodium in the presence of 2-5 microM cytoplasmic free calcium, the inward exchange current developed in two phases, a fast phase within the time course of solution changes, and a slow phase (tau approximately 4 s) indicative of recovery from sodium-dependent inactivation. (e) Under zero-trans conditions, the inward current was fully activated within solution switch times upon application of cytoplasmic calcium and did not decay. (f) The slow recovery phase of inward current upon removal of cytoplasmic sodium was also present under the zero-trans condition. (g) Sodium-dependent inactivation shows little or no dependence on membrane potential in guinea pig myocyte sarcolemma. (h) Sodium-dependent inactivation of outward current is attenuated in rate and extent as extracellular calcium is decreased. (i) Kinetics of the sodium-dependent inactivation and its dependence on major experimental variables are well described by a simple two-state inactivation model assuming one fully active and one fully inactive exchanger state, whereby the transition to the inactive state takes place from a fully sodium-loaded exchanger conformation with cytoplasmic orientation of binding sites (E1.3Ni).

UI MeSH Term Description Entries
D007474 Ion Exchange Reversible chemical reaction between a solid, often one of the ION EXCHANGE RESINS, and a fluid whereby ions may be exchanged from one substance to another. This technique is used in water purification, in research, and in industry. Exchange, Ion
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular

Related Publications

D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
October 2008, American journal of physiology. Cell physiology,
D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
January 1981, The Journal of general physiology,
D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
May 2002, Biophysical journal,
D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
October 2008, American journal of physiology. Cell physiology,
D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
January 2015, Progress in biophysics and molecular biology,
D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
March 2007, American journal of physiology. Cell physiology,
D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
April 1992, Biophysical journal,
D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
January 1991, Annals of the New York Academy of Sciences,
D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
December 1987, Biochemical and biophysical research communications,
D W Hilgemann, and S Matsuoka, and G A Nagel, and A Collins
April 1999, Sheng li ke xue jin zhan [Progress in physiology],
Copied contents to your clipboard!