Rabbit muscle phosphofructokinase. Modification of molecular and regulatory kinetic properties with the affinity label 5'-p-(fluorosulfonyl)benzoyl adenosine. 1978

D W Pettigrew, and C Frieden

The affinity label 5'-p-(fluorosulfonyl)benzoyl adenosine modifies rabbit muscle phosphofructokinase to the extent of one group/subunit. Modification appears to occur at a binding site specific for AMP, cyclic AMP, and ADP, i.e. those adenine nucleotides which are activators under conditions where regulatory kinetic behavior is obtained. The consequences of the modification are consistent with the model proposed previously for correlation between the pK of specific ionizable groups, regulatory kinetic behavior, ligand binding, and the reversible cold inactivation of the enzyme (Frieden, C., Gilbert. H. R., and Bock, P. E. (1976) J. Biol. Chem. 251, 5644-5647). Thus, the modification shifts the apparent pK of the essential ionizable groups from 6.9 to 6.4 at 25 degrees C, with the result that regulatory kinetic behavior at pH 6.9 and 25 degrees C is lost. Furthermore, the apparent affinity of a site (other than the active site) for ATP, as measured by ATP-dependent quenching of intrinsic protein fluorescence at pH 6.9 and 25 degrees C, is decreased by the modification. Regulatory kinetic behavior for both substrates is obtained with the modified enzyme at a lower pH, consistent with the downward shift in the pK of the ionizable groups, but sensitivity to cAMP activation is abolished by the modification. The loss of regulatory kinetic behavior upon modification of sulfhydryl groups does not appear to be the same as that due to modification by the affinity label.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

D W Pettigrew, and C Frieden
September 1976, The Journal of biological chemistry,
D W Pettigrew, and C Frieden
November 1989, Archives of biochemistry and biophysics,
Copied contents to your clipboard!