Autogenetic reflex action on to gamma motoneurones by stretch of triceps surae in the decerebrated cat. 1978

P H Ellaway, and J R Trott

1. Tonically firing gamma motoneurones of known conduction velocity (total eighty-seven, range 15-43 m/sec) have been isolated in peripheral muscular nerves to triceps surae. Their responses to stretch of triceps surae have been studied in decerebrated cats. A small amplitude, quick stretch and release was used to provide a selective stimulus for primary endings of muscle spindles. 2. To check the selectivity, recordings were made from 135 afferents from triceps surae under conditions closely similar to the reflex experiments. The threshold of all but a few primary endings of muscle spindles law below 50 micrometer whereas threshold was above 50 micrometer for the majority of secondary endings and tendon organs. A 20 micrometer stretch excited approximately half the primary endings but only one of thirty-six secondaries and no tendon organs responded to such a small stretch. Nine group III afferents were also studied but none responded to stretch. 3. Stretch of up to 50 micrometer excited twenty-three and inhibited eleven gamma motoneurones while thirty-three remained unaffected. A further twenty showed mixed responses, being inhibited initially before being excited at longer latency. Thresholds for reflex responses of gamma motoneurones frequently occurred below 20 mum and responses were close to maximal for stretch of 50 micrometer. 4. Excitation always had a lower threshold to stretch than did inhibition for those gamma motoneurones showing mixed responses and was the more potent of the two effects. 5. Excitation to stretch had central delays, to the incoming group Ia volley, ranging from 5 to 14 msec while similarly calculated delays for excitation of alpha motoneurones ranged from 0.6 to 3.0 msec. Central delays of the gamma inhibitory responses lay in an intermediate range of 1.7-7.0 msec. 6. The long central delays of excitation of gamma motoneurones in response to stretch do not reflect transmission in supraspinal pathways since the reflex persisted following spinal section. 7. Excitation of gamma motoneurones was weak in comparison with that of tonically firing alpha motoneurones recorded in the same preparations and it was always necessary to sum a number of responses in order to reveal an effect...

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009047 Motor Neurons, Gamma Motor neurons which activate the contractile regions of intrafusal SKELETAL MUSCLE FIBERS, thus adjusting the sensitivity of the MUSCLE SPINDLES to stretch. Gamma motor neurons may be "static" or "dynamic" according to which aspect of responsiveness (or which fiber types) they regulate. The alpha and gamma motor neurons are often activated together (alpha gamma coactivation) which allows the spindles to contribute to the control of movement trajectories despite changes in muscle length. Neurons, Fusimotor,Neurons, Gamma Motor,Gamma Motorneurons,Motor Neurons, Gamma-Efferent,Fusimotor Neuron,Fusimotor Neurons,Gamma Motor Neuron,Gamma Motor Neurons,Gamma Motorneuron,Gamma-Efferent Motor Neuron,Gamma-Efferent Motor Neurons,Motor Neuron, Gamma,Motor Neuron, Gamma-Efferent,Motor Neurons, Gamma Efferent,Motorneuron, Gamma,Motorneurons, Gamma,Neuron, Fusimotor,Neuron, Gamma Motor,Neuron, Gamma-Efferent Motor,Neurons, Gamma-Efferent Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P H Ellaway, and J R Trott
December 2002, The Journal of physiology,
P H Ellaway, and J R Trott
October 1975, Experimental neurology,
P H Ellaway, and J R Trott
February 1987, Journal of neurophysiology,
P H Ellaway, and J R Trott
February 1980, Experimental brain research,
P H Ellaway, and J R Trott
January 1983, Experimental brain research,
P H Ellaway, and J R Trott
November 1970, Journal of neurophysiology,
P H Ellaway, and J R Trott
January 2008, Journal of athletic training,
Copied contents to your clipboard!