Interindividual variation in carcinogen metabolism and bladder cancer risk. 1992

P Vineis, and G Ronco
Dipartimento di Scienze Biomediche e Oncologia, Umana, Torino, Italy.

Epidemiological studies indicate that subjects of the genetically based slow acetylator phenotype may be at higher risk for bladder cancer than fast acetylators, particularly when they are exposed to carcinogenic arylamines: N-acetylation is a detoxification step in the metabolism of some arylamines. We describe two collaborative studies on tobacco smoking, in which markers of internal dose (arylamine-hemoglobin adducts) and markers of genetically-based metabolic polymorphism have been coupled. In the first investigation, we found that hemoglobin adducts formed by mononuclear arylamines have high reciprocal correlation coefficients, as do adducts from binuclear arylamines. This tendency of adducts with structurally similar arylamines to correlate reciprocally explains a large proportion of the residual variance seen after controlling for smoking habits (number and type of cigarettes). In the second study, the concentration of 4-amino-biphenyl-hemoglobin adducts varied according to three independent determinants: number of cigarettes, type of tobacco (air or flue cured), and acetylator phenotype (slow and fast). The dose-response relationship between the amount of tobacco smoked and level of 4-aminobiphenyl-hemoglobin adducts in the slow acetylators (with an immediate steep increase of the adducts) was different from that in the fast acetylators (with a more regular increase). These findings from "molecular epidemiology" may contribute to an understanding of the role of metabolic polymorphism in human carcinogenesis.

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D001749 Urinary Bladder Neoplasms Tumors or cancer of the URINARY BLADDER. Bladder Cancer,Bladder Neoplasms,Cancer of Bladder,Bladder Tumors,Cancer of the Bladder,Malignant Tumor of Urinary Bladder,Neoplasms, Bladder,Urinary Bladder Cancer,Bladder Cancers,Bladder Neoplasm,Bladder Tumor,Cancer, Bladder,Cancer, Urinary Bladder,Neoplasm, Bladder,Neoplasm, Urinary Bladder,Tumor, Bladder,Tumors, Bladder,Urinary Bladder Neoplasm
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000611 Aminobiphenyl Compounds Biphenyl compounds substituted in any position by one or more amino groups. Permitted are any substituents except fused rings. Biphenylamines,Compounds, Aminobiphenyl

Related Publications

P Vineis, and G Ronco
January 1984, IARC scientific publications,
P Vineis, and G Ronco
January 1989, Pharmacology & therapeutics,
P Vineis, and G Ronco
November 2005, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology,
P Vineis, and G Ronco
April 2000, Journal of clinical psychopharmacology,
P Vineis, and G Ronco
August 1977, The New England journal of medicine,
P Vineis, and G Ronco
January 1993, Pharmacology & toxicology,
Copied contents to your clipboard!