Myosin phosphatase and myosin phosphorylation in differentiating C2C12 cells. 2003

Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
Muscle Biology Group, University of Arizona, Tucson, AZ 85721, USA.

C2C12 cells offer a useful model to study the differentiation of non-muscle cells to skeletal muscle cells. Myosin phosphorylation and changes in related enzymes, with an emphasis on myosin phosphatase (MP) were analyzed over the first 6 days of C2C12 differentiation. There was a transition from myosin phosphatase target subunit 1 (MYPT1), predominant in the non-muscle cells to increased expression of MYPT2. Levels of MYPT1/2 were estimated, and both isoforms were higher in non- or partially differentiated cells compared to the concentrations in the differentiated isolated myotubes from day 6. A similar profile of expression was estimated for the type 1 protein phosphatase catalytic subunit, delta isoform (PP1c delta). Phosphatase activities, using phosphorylated smooth and skeletal muscle myosins, were estimated for total cell lysates and isolated myotubes. In general, smooth muscle myosin was the preferred substrate. Although the expression of MYPT1/2 and PP1c delta was considerably reduced in isolated myotubes the phosphatase activities were not reduced to corresponding levels. Most of the MP activity was due to PP1c, as indicated by okadaic acid. In spite of relatively high expression of MYPT1/2 and PP1c delta, marked phosphorylation of non-muscle myosin (over 50% of total myosin) was observed at day 2 (onset of expression of muscle-specific proteins) and both mono- and diphosphorylated light chains were observed. Partial inhibition of MLCK by 1-(5-chloronaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine HCl (ML-9) or by a construct designed from the autoinhibitory domain of MLCK, resulted in an increase in small myotubes (3-5 nuclei) after 3 days of differentiation and a decrease in larger myotubes (compared to control). The effect of ML-9 was not due to a reduction in intracellular Ca2+ levels. These results suggest that phosphorylation of non-muscle myosin is important in growth of myotubes, either in the fusion process to form larger myotubes or indirectly, by its role in sarcomere organization.

UI MeSH Term Description Entries
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009219 Myosin-Light-Chain Kinase An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction. Myosin Kinase,Myosin LCK,Myosin Regulatory Light-Chain Kinase,Kinase, Myosin,Kinase, Myosin-Light-Chain,LCK, Myosin,Myosin Light Chain Kinase,Myosin Regulatory Light Chain Kinase
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
July 1998, European journal of cell biology,
Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
November 1984, Biochimica et biophysica acta,
Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
October 2005, Cellular signalling,
Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
May 2007, Biochemical and biophysical research communications,
Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
January 2002, The Journal of biological chemistry,
Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
March 2017, Biochemistry and biophysics reports,
Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
June 2015, Journal of cellular physiology,
Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
March 1996, The Journal of biological chemistry,
Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
March 2013, Molecular biology of the cell,
Yue Wu, and Ferenc Erdodi, and Andrea Murányi, and Kevin D Nullmeyer, and Ronald M Lynch, and David J Hartshorne
December 2005, The Journal of biological chemistry,
Copied contents to your clipboard!