Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae. 1992

L N Sierkstra, and J M Verbakel, and C T Verrips
Department of Molecular Cell Biology, University of Utrecht, The Netherlands.

mRNA steady-state levels and activities of enzymes of intermediary carbon metabolism (hexokinase, phosphoglucoisomerase, phosphofructokinase, glucose-6-phosphate dehydrogenase, phosphoglucomutase) and glucose-regulated enzymes (pyruvate decarboxylase, pyruvate dehydrogenase, invertase, alcohol dehydrogenase) were determined in glucose-limited continuous cultures of an industrial strain of Saccharomyces cerevisiae at different dilution rates (D) ranging from 0.05 to 0.315 h-1. The activity of most enzymes measured remained constant over this range except for alcohol dehydrogenase I/II which decreased proportionally with increasing dilution rate. A decrease in phosphoglucomutase activity occurred with increasing dilution rate but reached a minimum at D 0.2 h-1 and from thereon remained constant. A decrease in pyruvate decarboxylase activity and a slight decrease in phosphoglucoisomerase activity was observed. At D 0.29/0.315 h-1, at the onset of the Crabtree effect, most glycolytic enzymes remained constant except for pyruvate decarboxylase and glucose-6-phosphate dehydrogenase which increased at D 0.315 h-1 and alcohol dehydrogenase I/II which decreased. The ADHI/II and PDC1 mRNA levels obtained at the different dilution rates were in accordance with the activity measurements. The mRNA level of HXK1 decreased with increasing dilution rates, whereas the transcription of HXK2 increased. Pyruvate dehydrogenase (PDA1) and PGI1 mRNA fluctuated but no significant change could be detected. These results indicate that there is no transcriptional or translational regulation of glycolytic flux between D 0.05 h-1 and 0.315 h-1 except at the branch point between oxidative and fermentative metabolism (pyruvate decarboxylase/pyruvate dehydrogenase) at D 0.315 h-1. Surprisingly regulation of the Crabtree effect does not seem to involve transcriptional regulation of PDA1.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004794 Enzyme Repression The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. Repression, Enzyme
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

L N Sierkstra, and J M Verbakel, and C T Verrips
January 1997, Microbiology (Reading, England),
L N Sierkstra, and J M Verbakel, and C T Verrips
March 1990, Journal of general microbiology,
L N Sierkstra, and J M Verbakel, and C T Verrips
March 1990, Journal of general microbiology,
L N Sierkstra, and J M Verbakel, and C T Verrips
February 1989, Applied and environmental microbiology,
L N Sierkstra, and J M Verbakel, and C T Verrips
December 2003, FEMS microbiology letters,
L N Sierkstra, and J M Verbakel, and C T Verrips
June 2000, Enzyme and microbial technology,
L N Sierkstra, and J M Verbakel, and C T Verrips
May 1995, Microbiology (Reading, England),
L N Sierkstra, and J M Verbakel, and C T Verrips
August 1995, Microbiology (Reading, England),
Copied contents to your clipboard!