Characterization of a second myosin from Acanthamoeba castellanii. 1978

T D Pollard, and W F Stafford, and M E Porter

We purified a 400,000 molecular weight myosin, myosin-II, from Acanthamoeba castellanii. The sequence of ion exchange chromatography, actomyosin precipitation, actin extraction, and gel permeation chromatography yields per 100 g of cells about 11 mg of myosin-II which is 90 to 96% pure. ATPase activity is highest in the presence of Ca2+, but the enzyme is also active in EDTA provided high concentrations of K+ are present. The molecule consists of two 175,000 molecular weight heavy chains, one or two 17,500 molecular weight light chains, and two 16,500 molecular weight light chains. Myosin-II is rich in acidic residues and contains about 32 residues of cysteine/mol. The sedimentation coefficient is 5.9 S. Intrinsic viscosity is 126 cc/g. By equilibrium ultracentrifugation, the molecular weight averages depended upon the initial loading concentration in a way that suggested a 400,000 molecular weight species is in equilibrium with a 200,000 molecular weight species. By electron microscopy the molecule was seen to have two globular heads at one end of a tail 90 nm long. In KCl solutions of less than 0.25 M, the myosin-II tails self-associate to form the backbone of very small (6.6 x 205 nm) bipolar filaments with central bare zones 97 nm long. Myosin-II binds to actin filaments, forming periodic arrowhead-shaped complexes, but its Mg2+ ATPase activity is activated only 50% or less by actin. When radioactive myosin-II is incubated up to 90 min in unlabeled Acanthamoeba homogenates, it is not degraded into smaller fragments, such as the 190,000 molecular weight myosin-I. Our observations and the detailed enzymatic data presented by Maruta and Korn ((1977) J. Biol. Chem. 252, 6501-6509) argue that the smaller Acanthamoeba myosin-I (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem, 248, 4682-2690) does not arise by fragmentation of myosin-II in the homogenate or extract.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000656 Amoeba A genus of ameboid protozoa. Characteristics include a vesicular nucleus and the formation of several PSEUDOPODIA, one of which is dominant at a given time. Reproduction occurs asexually by binary fission. Ameba
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T D Pollard, and W F Stafford, and M E Porter
November 1989, The Journal of biological chemistry,
T D Pollard, and W F Stafford, and M E Porter
August 1983, The Journal of biological chemistry,
T D Pollard, and W F Stafford, and M E Porter
July 1973, The Journal of biological chemistry,
T D Pollard, and W F Stafford, and M E Porter
January 1991, Methods in enzymology,
T D Pollard, and W F Stafford, and M E Porter
April 1985, The Journal of biological chemistry,
T D Pollard, and W F Stafford, and M E Porter
May 1979, The Journal of biological chemistry,
T D Pollard, and W F Stafford, and M E Porter
January 2001, Microbial pathogenesis,
T D Pollard, and W F Stafford, and M E Porter
January 1982, Methods in enzymology,
T D Pollard, and W F Stafford, and M E Porter
July 1999, Experimental parasitology,
T D Pollard, and W F Stafford, and M E Porter
September 2013, The Journal of biological chemistry,
Copied contents to your clipboard!