Differential effects of age on subpopulations of hippocampal theta cells. 1992

S J Mizumori, and C A Barnes, and B L McNaughton
Psychology Department, University of Colorado, Boulder 80309.

The possible contribution of age-related changes in the firing properties of hippocampal theta cells to spatial learning deficits was addressed in the present study. The behavioral correlates of theta cells in strata oriens, pyramidale, and granulosum were compared as young and old rats performed a radial maze spatial working memory task. Behaviorally, the old animals made significantly more errors on the maze and required more time to solve the task than did young animals. Firing rates were compared in four different locomotion states: still, running radially inward and radially outward, and forward motion. The discharge rates of theta cells in strata pyramidale and granulosum were significantly modulated by these movements in both age groups. Stratum oriens theta cells recorded from young animals, on the other hand, were not movement-sensitive, while similar cells from old animals demonstrated exaggerated responses to movement. In old animals, the mean discharge rates were higher in stratum granulosum and lower in stratum oriens than in the young rats. The discharge rates of cells in stratum pyramidale did not differ between age groups. These region specific changes in the firing characteristics of hippocampal theta cells are likely to have important consequences for information processing in this structure.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008297 Male Males
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors

Related Publications

S J Mizumori, and C A Barnes, and B L McNaughton
April 1974, Cellular immunology,
S J Mizumori, and C A Barnes, and B L McNaughton
February 1991, Behavioral neuroscience,
S J Mizumori, and C A Barnes, and B L McNaughton
November 1987, Brain research,
S J Mizumori, and C A Barnes, and B L McNaughton
October 2011, Neurobiology of aging,
S J Mizumori, and C A Barnes, and B L McNaughton
September 1992, Brain research,
S J Mizumori, and C A Barnes, and B L McNaughton
July 1973, Nature: New biology,
S J Mizumori, and C A Barnes, and B L McNaughton
March 1984, Neuroscience letters,
S J Mizumori, and C A Barnes, and B L McNaughton
September 1975, Experimental aging research,
S J Mizumori, and C A Barnes, and B L McNaughton
January 1994, Brain research bulletin,
Copied contents to your clipboard!