Human fetal myelinated organotypic cultures. 1992

W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461.

We have previously reported the establishment of organotypic cultures derived from human fetal brain tissue. Although these cultures permit the testing of multiple hypotheses about normal human neurodevelopment and neuropathologic conditions, they have the limitation of not being myelinated and therefore preclude the study of questions related to myelinogenesis and diseases of myelin. In the current communication, we describe recent developments that allow us to overcome this limitation and permit the establishment of a myelinated organotypic culture model. Sections of dorsal column dissected from the lumbar spinal cord of human fetuses ranging in age 21-23 weeks of gestation were placed in culture. The explants were maintained for up to 12 weeks during which time they were characterized and shown to express a number of CNS cell-type-specific markers including glial fibrillary acidic protein (astrocytes), nerve growth factor receptor and neurofilament protein (neurons), CD68 (microglia), and myelin basic protein, HNK-1 and galactocerebroside (oligodendrocytes). In addition, lectin histochemistry using Ricinus communis agglutinin-1 detected microglia and endothelial cells. Upon explantation, abundant myelin was seen by electron microscopy in the cultures. Although during the culture period there was degradation of myelin, there was also evidence of maintenance of intact myelin sheaths around small caliber axons and de novo myelin synthesis. This model system may permit the further use of human organotypic cultures to investigate issues related to neurodevelopment and to pathologic conditions including those relevant to dysmyelination and demyelination.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females

Related Publications

W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
December 2016, Current opinion in cell biology,
W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
January 1985, The American journal of anatomy,
W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
January 1994, Dermatology (Basel, Switzerland),
W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
September 2022, Current protocols,
W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
December 2008, American journal of physiology. Gastrointestinal and liver physiology,
W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
February 1998, Respiration physiology,
W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
February 2024, Small (Weinheim an der Bergstrasse, Germany),
W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
January 1980, Experimental neurology,
W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
September 2021, eLife,
W D Lyman, and W C Hatch, and E Pousada, and G Stephney, and W K Rashbaum, and K M Weidenheim
June 1981, Biochimica et biophysica acta,
Copied contents to your clipboard!