3'-Spiro nucleosides, a new class of specific human immunodeficiency virus type 1 inhibitors: synthesis and antiviral activity of [2'-5'-bis-O-(tert-butyldimethylsilyl)-beta-D-xylo- and -ribofuranose]-3'-spiro-5"-[4"-amino-1",2"-oxathiole 2",2"-dioxide] (TSAO) pyrimidine nucleosides. 1992

M J Camarasa, and M J Pérez-Pérez, and A San-Félix, and J Balzarini, and E De Clercq
Instituto de Química Médica, Juan de la Cierva, Madrid, Spain.

A series of 3'-spiro nucleosides have been synthesized and evaluated as anti-HIV-1 agents. Reaction of O-mesylcyanohydrins of furanos-3'-ulosyl nucleosides with base afforded [1-[2',5'-bis-O- (tert-butyldimethylsilyl)-beta-D-xylo- and -ribofuranosyl]]-3'-spiro-5"- [4"-amino-1",2"-oxathiole 2",2"-dioxide] derivatives of thymine, uracil and 4-N-acetylcytosine 11 and 12. Desilylation of 11 and 12 gave the full deprotected 3'-spiro xylo- and ribofuranosyl nucleosides 13 and 14 or the partially 5'-O-deprotected-3'-spiro beta-D-xylo- and -ribo-nucleosides 15 and 16, or 2'-O-deprotected-3'-spiro beta-D-ribo-nucleoside 17. 2'-Deoxygenation of 17 afforded 2'-deoxy-3'-spiro beta-D-erythro-pentofuranosyl derivative 18. These 3'-spiro derivatives were evaluated for their anti-HIV-1 activity. All 3'-spiro nucleosides having a xylo configuration did not show any anti-HIV-1 activity. 3'-Spiro ribo-nucleosides with none or only one silyl group at C-2' or C-5' or the 2'-deoxy derivative were also inactive at subtoxic concentrations. However, 3'-spiro ribo-nucleosides having two silyl groups at C-2' and C-5' were potent and selective inhibitors of HIV-1. None of the nucleoside analogues that showed anti-HIV-1 activity proved inhibitory to the replication of HIV-2 or SIV.

UI MeSH Term Description Entries
D011741 Pyrimidine Nucleosides Pyrimidines with a RIBOSE attached that can be phosphorylated to PYRIMIDINE NUCLEOTIDES. Nucleosides, Pyrimidine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015302 Simian Immunodeficiency Virus Species of the genus LENTIVIRUS, subgenus primate immunodeficiency viruses (IMMUNODEFICIENCY VIRUSES, PRIMATE), that induces acquired immunodeficiency syndrome in monkeys and apes (SAIDS). The genetic organization of SIV is virtually identical to HIV. SIV (Simian immunodeficiency virus),Immunodeficiency Viruses, Simian,Simian Immunodeficiency Viruses,Immunodeficiency Virus, Simian
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015498 HIV-2 An HIV species related to HIV-1 but carrying different antigenic components and with differing nucleic acid composition. It shares serologic reactivity and sequence homology with the simian Lentivirus SIMIAN IMMUNODEFICIENCY VIRUS and infects only T4-lymphocytes expressing the CD4 phenotypic marker. HTLV-IV,Human T-Lymphotropic Virus Type IV,Human immunodeficiency virus 2,LAV-2,HIV-II,Human Immunodeficiency Virus Type 2,Human T Lymphotropic Virus Type IV,Immunodeficiency Virus Type 2, Human,SBL-6669

Related Publications

M J Camarasa, and M J Pérez-Pérez, and A San-Félix, and J Balzarini, and E De Clercq
November 1994, Journal of medicinal chemistry,
M J Camarasa, and M J Pérez-Pérez, and A San-Félix, and J Balzarini, and E De Clercq
January 2004, Nucleosides, nucleotides & nucleic acids,
M J Camarasa, and M J Pérez-Pérez, and A San-Félix, and J Balzarini, and E De Clercq
February 1977, The Journal of organic chemistry,
Copied contents to your clipboard!