Localization of basic fibroblast growth factor and vascular endothelial growth factor in human glial neoplasms. 1992

J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
Department of Pathology, SUNY Health Science Center, Syracuse.

Fibroblast growth factors (FGFs) are widely recognized as a family of molecules that can influence cell proliferation and tissue neovascularization. Although the basic form of FGF (bFGF) has been found to enhance the growth of primary cell cultures made from human glial tumors, its exact role in vivo has been unclear. Likewise, vascular endothelial growth factor (VEGF) is a newly discovered addition to the growing list of angiogenic factors but, unlike bFGF, VEGF has a unique specificity for endothelial cells and possesses the properties required for secretion. In this study, we localized both basic FGF and VEGF in human gliomas to assess their possible role in the pathogenesis of these neoplasms. Retrospective analysis was performed using glial neoplasms that were fixed in 10% neutral buffered formalin and embedded in paraffin. The immunocytochemical procedures were performed using specific polyclonal antibodies raised against the amino terminus of bFGF and VEGF, respectively. Immunoreactive (IR) basic FGF was localized in normal, reactive, and neoplastic astrocytes as well as selected populations of normal neurons. IR VEGF, in contrast, was present primarily in neurons of normal brain, but was also found in both reactive and neoplastic astrocytes. In adjacent 4-microns tissue sections, strong immunoreactivity for VEGF and bFGF was found within the same populations of cells. In areas of endothelial proliferation, the strongest immunoreactivity for both growth factors was found within large anaplastic astrocytes that surrounded abnormal blood vessels. Our data support the hypothesis that VEGF may complement the actions of basic FGF in glial neoplasia.

UI MeSH Term Description Entries
D009837 Oligodendroglioma A relatively slow-growing glioma that is derived from oligodendrocytes and tends to occur in the cerebral hemispheres, thalamus, or lateral ventricle. They may present at any age, but are most frequent in the third to fifth decades, with an earlier incidence peak in the first decade. Histologically, these tumors are encapsulated, relatively avascular, and tend to form cysts and microcalcifications. Neoplastic cells tend to have small round nuclei surrounded by unstained nuclei. The tumors may vary from well-differentiated to highly anaplastic forms. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, p2052; Adams et al., Principles of Neurology, 6th ed, p655) Oligodendroblastoma,Anaplastic Oligodendroglioma,Mixed Oligodendroglioma-Astrocytoma,Mixed Oligodendroglioma-Ependymoma,Oligodendroglioma, Adult,Oligodendroglioma, Childhood,Oligodendroglioma, Well-Differentiated,Well-Differentiated Oligodendroglioma,Adult Oligodendroglioma,Adult Oligodendrogliomas,Anaplastic Oligodendrogliomas,Childhood Oligodendroglioma,Childhood Oligodendrogliomas,Mixed Oligodendroglioma Astrocytoma,Mixed Oligodendroglioma Ependymoma,Mixed Oligodendroglioma-Astrocytomas,Mixed Oligodendroglioma-Ependymomas,Oligodendroblastomas,Oligodendroglioma, Anaplastic,Oligodendroglioma, Well Differentiated,Oligodendroglioma-Astrocytoma, Mixed,Oligodendroglioma-Astrocytomas, Mixed,Oligodendroglioma-Ependymoma, Mixed,Oligodendroglioma-Ependymomas, Mixed,Oligodendrogliomas,Oligodendrogliomas, Adult,Oligodendrogliomas, Anaplastic,Oligodendrogliomas, Childhood,Oligodendrogliomas, Well-Differentiated,Well Differentiated Oligodendroglioma,Well-Differentiated Oligodendrogliomas
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001254 Astrocytoma Neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors. Fibrillary astrocytomas are the most common type and may be classified in order of increasing malignancy (grades I through IV). In the first two decades of life, astrocytomas tend to originate in the cerebellar hemispheres; in adults, they most frequently arise in the cerebrum and frequently undergo malignant transformation. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2013-7; Holland et al., Cancer Medicine, 3d ed, p1082) Astrocytoma, Subependymal Giant Cell,Glioma, Astrocytic,Oligoastrocytoma, Mixed,Pleomorphic Xanthoastrocytomas,Anaplastic Astrocytoma,Astrocytoma, Grade I,Astrocytoma, Grade II,Astrocytoma, Grade III,Astrocytoma, Protoplasmic,Astroglioma,Cerebral Astrocytoma,Childhood Cerebral Astrocytoma,Fibrillary Astrocytoma,Gemistocytic Astrocytoma,Intracranial Astrocytoma,Juvenile Pilocytic Astrocytoma,Pilocytic Astrocytoma,Subependymal Giant Cell Astrocytoma,Anaplastic Astrocytomas,Astrocytic Glioma,Astrocytic Gliomas,Astrocytoma, Anaplastic,Astrocytoma, Cerebral,Astrocytoma, Childhood Cerebral,Astrocytoma, Fibrillary,Astrocytoma, Gemistocytic,Astrocytoma, Intracranial,Astrocytoma, Juvenile Pilocytic,Astrocytoma, Pilocytic,Astrocytomas,Astrocytomas, Grade III,Astrogliomas,Cerebral Astrocytoma, Childhood,Cerebral Astrocytomas,Childhood Cerebral Astrocytomas,Fibrillary Astrocytomas,Gemistocytic Astrocytomas,Gliomas, Astrocytic,Grade I Astrocytoma,Grade I Astrocytomas,Grade II Astrocytoma,Grade II Astrocytomas,Grade III Astrocytoma,Grade III Astrocytomas,Intracranial Astrocytomas,Juvenile Pilocytic Astrocytomas,Mixed Oligoastrocytoma,Mixed Oligoastrocytomas,Pilocytic Astrocytoma, Juvenile,Pilocytic Astrocytomas,Pleomorphic Xanthoastrocytoma,Protoplasmic Astrocytoma,Protoplasmic Astrocytomas,Xanthoastrocytoma, Pleomorphic
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2
D016228 Endothelial Growth Factors These growth factors are soluble mitogens secreted by a variety of organs. The factors are a mixture of two single chain polypeptides which have affinity to heparin. Their molecular weight are organ and species dependent. They have mitogenic and chemotactic effects and can stimulate endothelial cells to grow and synthesize DNA. The factors are related to both the basic and acidic FIBROBLAST GROWTH FACTORS but have different amino acid sequences. Endothelial Cell-Derived Growth Factors,alpha-Endothelial Growth Factor,beta-Endothelial Growth Factor,ECDGF,Endo-GF,Endothelial Growth Factor,Endothelial Growth Factor Polypeptides,Endothelial Cell Derived Growth Factors,Growth Factor, Endothelial,Growth Factor, alpha-Endothelial,Growth Factor, beta-Endothelial,Growth Factors, Endothelial,alpha Endothelial Growth Factor,beta Endothelial Growth Factor

Related Publications

J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
February 2000, The British journal of dermatology,
J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
January 2001, Surgery today,
J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
August 2004, Pathology international,
J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
September 1998, British journal of cancer,
J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
January 1996, Growth factors (Chur, Switzerland),
J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
January 2002, Oncology reports,
J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
April 2002, The British journal of ophthalmology,
J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
January 2003, Hepato-gastroenterology,
J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
April 2003, Brain research,
J A Alvarez, and A Baird, and A Tatum, and J Daucher, and R Chorsky, and A M Gonzalez, and E G Stopa
January 2015, International journal of clinical and experimental pathology,
Copied contents to your clipboard!