Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. 2004

Elena Ezhkova, and William P Tansey
Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA.

In Saccharomyces cerevisiae, methylation of histone H3 at active genes is an epigenetic mark that distinguishes active from silent chromatin and functions as a short-term "memory" of recent transcription. Methylation of H3 at lysine residues K4 and K79 depends on ubiquitylation of histone H2B, but the mechanisms linking H2B ubiquitylation to H3 methylation are unknown. Here, we demonstrate that proteasomal ATPases Rpt4 and Rpt6 function to connect these two histone modifications. We show that recruitment of proteasome subunits to chromatin depends on H2B ubiquitylation and that mutations in Rpt4 and Rpt6 disrupt H3 methylation at K4 and K79 but leave H2B ubiquitylation intact. Consistent with their role in H3 methylation, we also find that mutations in Rpt4 and 6-but not components of the 20S proteasome-disrupt telomeric gene silencing. These data reveal that proteasome subunits function in epigenetic gene regulation by linking chromatin modifications that establish the histone code.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015533 Transcriptional Activation Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes. Gene Activation,Genetic Induction,Transactivation,Induction, Genetic,Trans-Activation, Genetic,Transcription Activation,Activation, Gene,Activation, Transcription,Activation, Transcriptional,Genetic Trans-Activation,Trans Activation, Genetic

Related Publications

Elena Ezhkova, and William P Tansey
December 2009, The Journal of biological chemistry,
Elena Ezhkova, and William P Tansey
May 2022, Journal of peptide science : an official publication of the European Peptide Society,
Elena Ezhkova, and William P Tansey
October 2017, Molecular cell,
Elena Ezhkova, and William P Tansey
September 2008, Chembiochem : a European journal of chemical biology,
Elena Ezhkova, and William P Tansey
August 2002, The Journal of biological chemistry,
Elena Ezhkova, and William P Tansey
October 2005, Journal of molecular biology,
Elena Ezhkova, and William P Tansey
March 2009, The Journal of cell biology,
Elena Ezhkova, and William P Tansey
September 2006, Briefings in functional genomics & proteomics,
Copied contents to your clipboard!