Astrocyte regulation of human brain capillary endothelial fibrinolysis. 2003

Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
Department of Neurology, University of California, Irvine, College of Medicine, Irvine, CA, USA.

BACKGROUND Astrocytes are known to regulate a wide variety of brain endothelial cell functions. Prior work, using a mixed species co-culture system, has shown astrocyte regulation of brain capillary endothelial expression of key hemostasis factors tissue plasminogen activator (tPA) and its inhibitor, plasminogen activator inhibitor-1 (PAI-1). The purpose of this study is to define the fibrinolytic regulatory role of human astrocytes on human brain capillary endothelial cells. METHODS We used a blood-brain barrier model consisting of human astrocytes grown on transwell membrane inserts and co-cultured with human brain capillary endothelial cells. Following 48 h co-culture, we analyzed both endothelial mono-cultures and astrocyte-endothelial co-cultures for expression of tPA and PAI-1 mRNA, protein, and activity. CONCLUSIONS There were significant changes for both tPA and PAI-1 mRNA:tPA mRNA levels were decreased in co-cultures (55+/-16% of mono-cultures, p<0.0005) and PAI-1 mRNA levels were increased 144+/-38%, compared to mono-cultures (p<0.005). Co-cultures produced a 54% reduction in tPA protein (12.7+/-3.8 vs. 27.5+/-7.1 ng/ml, p<0.005) and a 24% increase in PAI-1 protein (117.5+/-3.2 vs. 94.9+/-5.9 ng/ml, p<0.0005). TGF-beta neutralizing antibody attenuated the observed changes in both tPA and PAI-1. These data indicate that human astrocytes regulate human brain capillary fibrinolysis in vitro by inhibiting tPA and enhancing PAI-1 expression. This regulation is mediated, in part, by transforming growth factor-beta. Our findings provide further evidence for the role of astrocytes in brain-specific hemostasis regulation.

UI MeSH Term Description Entries
D010959 Tissue Plasminogen Activator A proteolytic enzyme in the serine protease family found in many tissues which converts PLASMINOGEN to FIBRINOLYSIN. It has fibrin-binding activity and is immunologically different from UROKINASE-TYPE PLASMINOGEN ACTIVATOR. The primary sequence, composed of 527 amino acids, is identical in both the naturally occurring and synthetic proteases. Alteplase,Plasminogen Activator, Tissue-Type,T-Plasminogen Activator,Tissue-Type Plasminogen Activator,Actilyse,Activase,Lysatec rt-PA,TTPA,Tisokinase,Tissue Activator D-44,Lysatec rt PA,Lysatec rtPA,Plasminogen Activator, Tissue,Plasminogen Activator, Tissue Type,T Plasminogen Activator,Tissue Activator D 44,Tissue Type Plasminogen Activator
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005342 Fibrinolysis The natural enzymatic dissolution of FIBRIN. Fibrinolyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
December 1996, Stroke,
Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
February 1999, Cellular and molecular neurobiology,
Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
August 1999, Stroke,
Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
December 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
April 2002, Glia,
Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
January 2006, Nature reviews. Neuroscience,
Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
June 2002, Journal of anatomy,
Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
March 2004, Archives of biochemistry and biophysics,
Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
September 1999, British journal of pharmacology,
Jeong Ai Kim, and Nam D Tran, and Shur-Jen Wang, and Mark J Fisher
March 2013, Life sciences,
Copied contents to your clipboard!