Secondary structure of two regions in expansion segments ES3 and ES6 with the potential of forming a tertiary interaction in eukaryotic 40S ribosomal subunits. 2004

Gunnar Alkemar, and Odd Nygård
Cell Biology Unit, Natural Science Section, Södertörns högskola, S-141 89 Huddinge, Sweden.

The 18S rRNA of the small eukaryotic ribosomal subunit contains several expansion segments. Electron microscopy data indicate that two of the largest expansion segments are juxtaposed in intact 40S subunits, and data from phylogenetic sequence comparisons indicate that these two expansion segments contain complementary sequences that could form a direct tertiary interaction on the ribosome. We have investigated the secondary structure of the two expansion segments in the region around the putative tertiary interaction. Ribosomes from yeast, wheat, and mouse-three organisms representing separate eukaryotic kingdoms-were isolated, and the structure of ES3 and part of the ES6 region were analyzed using the single-strand-specific chemical reagents CMCT and DMS and the double-strand-specific ribonuclease V1. The modification patterns were analyzed by primer extension and gel electrophoresis on an ABI 377 automated DNA sequencer. The investigated sequences were relatively exposed to chemical and enzymatic modification. This is in line with their indicated location on the surface at the solvent side of the subunit. The complementary ES3 and ES6 sequences were clearly inaccessible to single-strand modification, but available for cleavage by double-strand-specific RNase V1. The results are compatible with a direct helical interaction between bases in ES3 and ES6. Almost identical results were obtained with ribosomes from the three organisms investigated.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012337 RNA, Ribosomal, 18S Constituent of the 40S subunit of eukaryotic ribosomes. 18S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes. 18S Ribosomal RNA,18S RRNA,RNA, 18S Ribosomal,Ribosomal RNA, 18S
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014908 Triticum A plant genus of the family POACEAE that is the source of EDIBLE GRAIN. A hybrid with rye (SECALE CEREALE) is called TRITICALE. The seed is ground into FLOUR and used to make BREAD, and is the source of WHEAT GERM AGGLUTININS. Wheat,Durum Wheat,Triticum aestivum,Triticum durum,Triticum spelta,Triticum turgidum,Triticum turgidum subsp. durum,Triticum vulgare,Durum Wheats,Wheat, Durum
D017423 Sequence Analysis, RNA A multistage process that includes cloning, physical mapping, subcloning, sequencing, and information analysis of an RNA SEQUENCE. RNA Sequence Analysis,Sequence Determination, RNA,Analysis, RNA Sequence,Determination, RNA Sequence,Determinations, RNA Sequence,RNA Sequence Determination,RNA Sequence Determinations,RNA Sequencing,Sequence Determinations, RNA,Analyses, RNA Sequence,RNA Sequence Analyses,Sequence Analyses, RNA,Sequencing, RNA
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Gunnar Alkemar, and Odd Nygård
April 2018, The EMBO journal,
Gunnar Alkemar, and Odd Nygård
March 1975, Biochemical and biophysical research communications,
Gunnar Alkemar, and Odd Nygård
June 2009, Toxicology and applied pharmacology,
Gunnar Alkemar, and Odd Nygård
August 2013, Nature structural & molecular biology,
Gunnar Alkemar, and Odd Nygård
January 2021, Sub-cellular biochemistry,
Gunnar Alkemar, and Odd Nygård
February 2011, Science (New York, N.Y.),
Gunnar Alkemar, and Odd Nygård
November 2016, Nature structural & molecular biology,
Copied contents to your clipboard!