Modality of cell death induced by Foscan-based photodynamic treatment in human colon adenocarcinoma cell line HT29. 2004

S Marchal, and L Bezdetnaya, and F Guillemin
Unite de Recherche en Therapie Photodynamique, Centre Alexis Vautrin, Vandoeuvre-les-Nancy, 54511, France.

Apoptosis induced by photodynamic therapy (PDT) is considered to be an important factor defining the treatment outcome. Nevertheless, the relevance of apoptotic events in overall cell death should be established for every given photosensitizer. The present study addresses the contribution of Foscan-(meta-tetra(hydroxyphenyl)chlorine; mTHPC) photosensitized apoptosis in overall cell death in a model of cultured HT29 adenocarcinoma cells. Early events of cell death were assessed by the evaluation of mitochondrial response to mTHPC-mediated PDT, cytochrome c release and membrane depolarization. Apoptosis was measured through the activity of caspase-3 and the binding of the fluorescent conjugate Ca2+-dependent protein Annexin-V on membrane externalized phosphatidylserine at 2, 4, and 24 h post-PDT. Immediately after mTHPC-PDT, from 28 to 57% cells exhibited cytochrome c release concomitantly with mitochondrial membrane depolarization for light doses inducing more than 90% overall cell death. The maximum of caspase-3 activation (12-fold more than control) was reached 24 h after irradiation at fluence inducing 90% cell death (LD(90)). The corresponding measurement of apoptotic cells (12% of Annexin-V bound cells) confirmed the mild and delayed apoptotic response of HT29 cells to mTHPC-PDT.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008652 Mesoporphyrins Porphyrins with four methyl, two ethyl, and two propionic acid side chains attached to the pyrrole rings.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010778 Photochemotherapy Therapy using oral or topical photosensitizing agents with subsequent exposure to light. Blue Light Photodynamic Therapy,Photodynamic Therapy,Red Light PDT,Red Light Photodynamic Therapy,Therapy, Photodynamic,Light PDT, Red,PDT, Red Light,Photochemotherapies,Photodynamic Therapies,Therapies, Photodynamic
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017319 Photosensitizing Agents Drugs that are pharmacologically inactive but when exposed to ultraviolet radiation or sunlight are converted to their active metabolite to produce a beneficial reaction affecting the diseased tissue. These compounds can be administered topically or systemically and have been used therapeutically to treat psoriasis and various types of neoplasms. Photosensitizer,Photosensitizers,Photosensitizing Agent,Photosensitizing Effect,Photosensitizing Effects,Agent, Photosensitizing,Agents, Photosensitizing,Effect, Photosensitizing,Effects, Photosensitizing
D045304 Cytochromes c Cytochromes of the c type that are found in eukaryotic MITOCHONDRIA. They serve as redox intermediates that accept electrons from MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX III and transfer them to MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX IV. Cytochrome c,Ferricytochrome c,Ferrocytochrome c,Apocytochrome C

Related Publications

S Marchal, and L Bezdetnaya, and F Guillemin
August 1999, Journal of cell science,
S Marchal, and L Bezdetnaya, and F Guillemin
November 2013, Jundishapur journal of natural pharmaceutical products,
S Marchal, and L Bezdetnaya, and F Guillemin
February 1979, Journal of cell science,
S Marchal, and L Bezdetnaya, and F Guillemin
February 1995, Biochemical and biophysical research communications,
S Marchal, and L Bezdetnaya, and F Guillemin
October 1996, Biochimica et biophysica acta,
S Marchal, and L Bezdetnaya, and F Guillemin
June 2009, International journal of cancer,
S Marchal, and L Bezdetnaya, and F Guillemin
March 1989, European journal of pharmacology,
S Marchal, and L Bezdetnaya, and F Guillemin
March 1992, Journal of cellular physiology,
Copied contents to your clipboard!