Gene transcription and regulation of oocyte maturation. 2004

Karina F Rodriguez, and Charlotte E Farin
North Carolina State University, Department of Animal Science, Box 7621, 231B Polk Hall, Raleigh, NC 27695-7621, USA.

The developmental potential of an embryo is dependent on the developmental potential of the oocyte from which it originates. The process of oocyte maturation is critical for the efficient application of biotechnologies such as in vitro embryo production and mammalian cloning. However, the overall efficiency of in vitro maturation remains low because oocytes matured in vitro have a lower developmental competence than oocytes matured in vivo. Furthermore, oocytes that have been exposed to gonadotropins have greater developmental competence than oocytes matured in the absence of gonadotropins. By understanding the molecular mechanisms underlying gonadotropin-induced maturation, improvement in oocyte maturation technologies may be expected as procedures to manipulate specific factors involved in signalling for resumption of meiosis are identified. The present review will focus on transcriptional mechanisms underlying the maturation of mammalian oocytes in vitro, as well as on the acquisition of oocyte developmental competence. In addition, a working model for the transcriptional control of mammalian oocyte maturation is proposed.

UI MeSH Term Description Entries
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005260 Female Females
D006062 Gonadotropins Hormones that stimulate gonadal functions such as GAMETOGENESIS and sex steroid hormone production in the OVARY and the TESTIS. Major gonadotropins are glycoproteins produced primarily by the adenohypophysis (GONADOTROPINS, PITUITARY) and the placenta (CHORIONIC GONADOTROPIN). In some species, pituitary PROLACTIN and PLACENTAL LACTOGEN exert some luteotropic activities. Gonadotropin
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D027724 Reproductive Techniques, Assisted Clinical and laboratory techniques used to enhance fertility in humans and animals. Reproductive Technology, Assisted,Assisted Reproductive Technics,Assisted Reproductive Techniques,Assisted Reproductive Technic,Assisted Reproductive Technique,Assisted Reproductive Technologies,Assisted Reproductive Technology,Reproductive Technic, Assisted,Reproductive Technics, Assisted,Reproductive Technique, Assisted,Reproductive Technologies, Assisted,Technic, Assisted Reproductive,Technics, Assisted Reproductive,Technique, Assisted Reproductive,Techniques, Assisted Reproductive,Technologies, Assisted Reproductive,Technology, Assisted Reproductive

Related Publications

Karina F Rodriguez, and Charlotte E Farin
January 1980, Current topics in cellular regulation,
Karina F Rodriguez, and Charlotte E Farin
January 2003, Current topics in developmental biology,
Karina F Rodriguez, and Charlotte E Farin
June 1985, Cell differentiation,
Karina F Rodriguez, and Charlotte E Farin
March 1982, Journal of reproduction and fertility,
Karina F Rodriguez, and Charlotte E Farin
January 2017, The International journal of developmental biology,
Karina F Rodriguez, and Charlotte E Farin
June 2008, Development, growth & differentiation,
Karina F Rodriguez, and Charlotte E Farin
April 2007, The Journal of reproduction and development,
Karina F Rodriguez, and Charlotte E Farin
January 1995, Current topics in developmental biology,
Karina F Rodriguez, and Charlotte E Farin
January 2021, Frontiers in cell and developmental biology,
Karina F Rodriguez, and Charlotte E Farin
August 1988, Human reproduction (Oxford, England),
Copied contents to your clipboard!