Cadmium-induced apoptosis in C6 glioma cells: influence of oxidative stress. 2004

Wim Wätjen, and Detmar Beyersmann
Heinrich-Heine-University, Department of Toxicology, Universitätsstrasse 1, 40225 Düsseldorf, Germany. wim.waetjen@uni-duesseldorf.de

Cadmium has recently been shown to induce apoptosis in C6 glioma cells via disruption of the mitochondrial membrane potential and subsequent caspase 9-activation. Here we show that both H2O2 and CdCl2 induced apoptotic DNA fragmentation in C6 cells. The employment of glutathione as an antioxidant prevented the induction of apoptotic DNA fragmentation by cadmium completely and catalase strongly reduced cadmium-induced DNA fragmentation suggesting that cadmium exerts its apoptotic effects at least partly via the production of H2O2. Apoptosis may be induced by cadmium indirectly through formation of oxidative stress, e.g., by inhibition of antioxidant enzymes. After incubation of C6 cells with cadmium for short times (up to 4 h), we analyzed the formation of intracellular reactive oxygen species and cellular lipid peroxidation. After 1 h of incubation with inreasing concentrations of CdCl2 (1-500 microM), no increase in dichlorofluorescein fluorescence was found. At variance, lipid peroxidation was slightly elevated after 2 h incubation with cadmium (50-100 microM). Furthermore, we analyzed the modulation of markers for oxidative stress after prolonged (24 h) exposure to cadmium. The intracellular glutathione content as measured using the fluorescent probe monobromobimane was decreased after incubation with CdCl2 (0.5-10 microM) for 24 h. Furthermore, we measured the effect of cadmium on the level of oxidized DNA lesions (predominantly 8-hydroxyguanine) using the bacterial Fpg-DNA-repair protein. After 24 h of incubation with 5 microM CdCl2 we found a sixfold increase in Fpg-sensitive DNA-lesions. We conclude that short time incubations with cadmium (up to 4 h) caused only slight or insignificant effects on the generation of reactive oxygen species (formation of thiobarbituric acid reactive substances, fluorescence of dichlorofluorescein), whereas incubation with this heavy metal for 24 h lead to a decrease in intracellular glutathione concentration and an increase in oxidative DNA-lesions. Our data demonstrate that cadmium as similar to H2O2 is a potent inducer of apoptosis in C6 cells. Even if cadmium unlike Fenton-type metals can not produce reactive oxygen species directly, the apoptotic effects of cadmium at least in part are mediated via induction of oxidative stress. Because both apoptosis and oxidative stress are thought to play important roles in neurodegenerative diseases, low concentrations of cadmium that initiate programmed cell death may lead to a selective cell death in distinct brain regions via generation of oxidative stress.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

Wim Wätjen, and Detmar Beyersmann
May 2003, Brain research,
Wim Wätjen, and Detmar Beyersmann
March 2012, Journal of biomedical materials research. Part A,
Wim Wätjen, and Detmar Beyersmann
May 2011, Acta pharmacologica Sinica,
Wim Wätjen, and Detmar Beyersmann
July 2007, Neurotoxicology,
Wim Wätjen, and Detmar Beyersmann
February 2005, Neuroscience research,
Wim Wätjen, and Detmar Beyersmann
March 2001, Journal of neuro-oncology,
Wim Wätjen, and Detmar Beyersmann
August 2023, Ecotoxicology and environmental safety,
Copied contents to your clipboard!