Combinatorial interaction of scorpion toxins Lqh-2, Lqh-3, and LqhalphaIT with sodium channel receptor sites-3. 2004

Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
Molecular and Cellular Biophysics, Friedrich Schiller University Jena, Jena, Germany.

Scorpion alpha-toxins LqhalphaIT, Lqh-2, and Lqh-3 are representatives of three groups of alpha-toxins that differ in their preference for insects and mammals. These alpha-insect, antimammalian, and alpha-like toxins bind to voltage-gated sodium channels and slow down channel inactivation. Sodium channel mutagenesis studies using various alpha-toxins have shown that they interact with receptor site 3, which is composed mainly of a short stretch of amino-acid residues between S3 and S4 of domain 4. Variation in this region results in marked differences between various subtypes of sodium channels with respect to their sensitivity to the three Lqh toxins. We incorporated the S3-S4 linker of domain 4 from hNaV1.2/hNaV1.1, hNaV1.3, hNaV1.6, and hNaV1.7 channels as well as individual point mutations into the rNaV1.4 skeletal muscle sodium channel. Our data show that the affinity of Lqh-3 and LqhalphaIT to sodium channels is markedly determined by an aspartate residue (Asp1428 in rNaV1.4); when mutated to glutamate, as is present in NaV1.1-1.3 channels, Lqh-3-channel interactions are abolished. The interaction of Lqh-2 and LqhalphaIT, however, is strongly reduced when a lysine residue (Lys1432 in rNaV1.4) is replaced by threonine (as in hNaV1.7), whereas this substitution is without effect for Lqh-3. The influence of Lys1432 on Lqh-2 and LqhalphaIT strongly depends on the context of the Asp/Glu site at position 1428, giving rise to a wide variety of toxicological phenotypes by means of a combinatorial mixing and matching of only a few residues in receptor site 3.

UI MeSH Term Description Entries
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012604 Scorpion Venoms Venoms from animals of the order Scorpionida of the class Arachnida. They contain neuro- and hemotoxins, enzymes, and various other factors that may release acetylcholine and catecholamines from nerve endings. Of the several protein toxins that have been characterized, most are immunogenic. Scorpion Toxin,Scorpion Toxins,Scorpion Venom Peptide,Tityus serrulatus Venom,Scorpion Venom,alpha-Scorpion Toxin,beta-Scorpion Toxin,gamma-Scorpion Toxin,Peptide, Scorpion Venom,Toxin, Scorpion,Toxin, alpha-Scorpion,Toxin, beta-Scorpion,Venom Peptide, Scorpion,Venom, Scorpion,Venom, Tityus serrulatus,alpha Scorpion Toxin,beta Scorpion Toxin,gamma Scorpion Toxin
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
January 1984, Journal de physiologie,
Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
February 2000, Pflugers Archiv : European journal of physiology,
Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
January 1986, Annals of the New York Academy of Sciences,
Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
July 2021, The Biochemical journal,
Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
February 2004, Journal of molecular evolution,
Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
January 2004, Journal of molecular recognition : JMR,
Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
February 2007, Toxicon : official journal of the International Society on Toxinology,
Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
January 2001, Neuroscience,
Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
November 1982, Biophysical journal,
Enrico Leipold, and Songqing Lu, and Dalia Gordon, and Alfred Hansel, and Stefan H Heinemann
November 1997, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!